Những câu hỏi liên quan
MN
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
NN
2 tháng 12 2015 lúc 22:01

áp dụng tính chất : lx| = |-x|

|x|+|y|\(\ge\)|x+y|

ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4

vậy giá trị nhỏ nhất là 4

dấu = xảy ra khi tất cả cùng dấu

cậu nên mua quyển sách mình nói nêu là dân chuyên toán

Bình luận (0)
H24
2 tháng 12 2015 lúc 21:57

Thanh Nguyễn Vinh chi tiết giùm

Bình luận (0)
VL
Xem chi tiết
NK
3 tháng 12 2015 lúc 21:58

Ta có

T=/x-1/+/x-2/+/x-3/+/x-4/

=/x-1/+/2-x/+/x-3/+/4-x/

Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2

nhớ tick mình nha

 

Bình luận (0)
TN
Xem chi tiết
LF
20 tháng 3 2017 lúc 23:09

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho \(VT\) ta có:

\(VT=\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\)

\(\ge\left|x+3+1-x\right|=4\left(1\right)\)

Áp dụng tiếp BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho mẫu của \(VP\) ta có:

\(\left|y-2\right|+\left|y+2\right|=\left|2-y\right|+\left|y+2\right|\)

\(\ge\left|2-y+y+2\right|=4\)\(\Rightarrow\dfrac{1}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{1}{4}\)

\(\Rightarrow VP=\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{16}{4}=4\left(2\right)\)

Từ \((1);(2)\) ta có: \(VT\ge4\ge VP\)

Đẳng thức xảy ra khi và chỉ khi \(VT=VP=4\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+3\right|+\left|x-1\right|=4\\\dfrac{16}{\left|y-2\right|+\left|y+2\right|}=4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\pm1\\x=-3\\x=-2\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}y=\pm2\\y=\pm1\\y=0\end{matrix}\right.\end{matrix}\right.\)

Bình luận (2)
NL
Xem chi tiết
ML
8 tháng 7 2015 lúc 13:10

Chia từng khoảng x ra để bỏ tất cả trị tuyệt đối rồi làm; có vẻ là rất dài.

Bình luận (0)
PT
31 tháng 3 2021 lúc 21:22

e hok lớp 6

mà bài này dễ có điều dài

Bình luận (0)
 Khách vãng lai đã xóa
LG
Xem chi tiết
VQ
25 tháng 8 2019 lúc 18:14

\(\Leftrightarrow\orbr{\begin{cases}x+1+x+2+x+3+x+4=20\\x+1+x+2+x+3+x+4=-20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+x+x+x\right)+1+2+3+4=20\\\left(x+x+x+x\right)+1+2+3+4=-20\text{​​}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+10=20\\x+10=-20\end{cases}}\Rightarrow\orbr{\begin{cases}x=20-10\\x=-20-10\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-30\end{cases}}\)

Bình luận (0)
HS
25 tháng 8 2019 lúc 20:33

\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=20\)

\(\Leftrightarrow\orbr{\begin{cases}x+1+x+2+x+3+x+4=20\\x+1+x+2+x+3+x+4=-20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left[x+x+x+x\right]+\left[1+2+3+4\right]=20\\\left[x+x+x+x\right]+\left[1+2+3+4\right]=-20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}4x+10=20\\4x+10=-20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}4x=10\\4x=-30\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=5\\2x=-15\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{15}{2}\end{cases}}\)

Vũ Bách Quang sai từ dòng thứ ba đến cuối . Xem kĩ lại nhé

Bình luận (0)
H24
Xem chi tiết
PS
Xem chi tiết
TM
30 tháng 6 2016 lúc 16:05

1.a) |x - 3/2| + |2,5 - x| = 0

=> |x - 3/2| = 0 và |2,5 - x| = 0

=> x = 3/2 và x = 2,5 (Vô lý vì x không thể xảy ra 2 trường hợp trong cùng 1 biểu thức).

Vậy x rỗng.

Bình luận (0)