DH

Những câu hỏi liên quan
SL
Xem chi tiết
MM
Xem chi tiết

Sửa đề: 2/2.3 ➜ 1/2.3

Giải:

M=1/1.2+1/2.3+...+1/49.50

M=1/1-1/2+1/2-1/3+...+1/49-1/50

M=1/1-1/50

M=49/50

Vì 49/50<1 nên M<1

Chúc bạn học tốt!

Bình luận (2)
HN
Xem chi tiết
NT
10 tháng 2 2023 lúc 22:00

M=1-1/2+1/2-1/3+...+1/49-1/50

=1-1/50<1

Bình luận (0)
NN
Xem chi tiết
IN
9 tháng 5 2016 lúc 22:14

\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{49.50}\)

\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}\)

\(M=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+........+\left(-\frac{1}{49}+\frac{1}{49}\right)-\frac{1}{50}\)

\(M=\frac{1}{1}-0+0+0+0+0+......+0+0-\frac{1}{50}\)

\(M=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)

Vì \(\frac{49}{50}<1\) nên  \(S<1\)

Bình luận (0)
H24
9 tháng 5 2016 lúc 22:12

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

     \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

     \(=1-\frac{1}{50}<1\)

\(\Rightarrow M<1\) 

Vậy \(M<1\)

Chúc bạn học tốt!!!!!!!

Bình luận (0)
HT
9 tháng 5 2016 lúc 23:04

M=1/1.2+1/2.3+1/3.4+...+1/49.50

M=1-1/2+1/2-1/3+...+1/49-1/50

M=1-1/50<1

Vậy M<1

Bình luận (0)
HM
Xem chi tiết
VD
10 tháng 5 2016 lúc 8:03

M=1/1.2+1/2.3+...+1/49.50

M=1/1-1/2+1/2-1/3+.....+1/49-1/50

M=1-1/50<1

=>M<1

Bình luận (0)
TD
10 tháng 5 2016 lúc 7:50

\(M=\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{49.50}\)

\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(M=1-\frac{1}{50}<1\)

\(=>M<1\)

Bình luận (0)
TA
10 tháng 5 2016 lúc 7:51

M = 1/1.2 + 1/2.3 + ... + 1/49.50

M = 1 - 1/2 + 1/2 - 1/3 + ... + 1/49 - 1/50

M = 1 - 1/50

M = 49/50 

Vì 49/50 < 1

=> M < 1

Bình luận (0)
KG
Xem chi tiết
PH
Xem chi tiết
DH
12 tháng 7 2021 lúc 16:29

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

\(B=1.2+2.3+3.4+...+49.50\)

\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)

\(=49.50.51\)

\(B=\frac{49.50.51}{3}=49.50.17\)

\(50^2.A-\frac{B}{17}=49.50-49.50=0\)

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
RF
6 tháng 6 2021 lúc 20:42

hình như ko phải so sánh mà là còn cái nịt (:

M =1/1.2+1/2.3+....+1/49.50

M=1/1-1/2+1/2-1/3+...+1/49-1/50

M=1/1-1/50

M=49/50

tính nha :-)

Bình luận (0)
 Khách vãng lai đã xóa
YN
6 tháng 6 2021 lúc 20:43

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

     \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

      \(=1-\frac{1}{50}< 1\)

Vậy  \(M< 1\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
6 tháng 6 2021 lúc 20:43

*Làm tiếp bài , not spam :vvv

Ta có :

\(\frac{49}{50}\)  \(1\)

Ta thấy , tử số của P/S \(\frac{49}{50}\) bé hơn mẫu số của P/S đó

=> P/S đó bé hơn \(1\)

=> \(\frac{49}{50}\)\(< 1\)

#Tường Vy ( Ninh Nguyễn )

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
YN
25 tháng 5 2021 lúc 20:33

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(M=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{49}+\frac{1}{49}\right)-\frac{1}{50}\)

\(M=1+0+0+...+0-\frac{1}{50}\)

\(M=\frac{49}{50}\)

\(\Rightarrow\frac{49}{50}< 1\)

\(\Rightarrow M< 1\)

Bình luận (0)
 Khách vãng lai đã xóa
HV
25 tháng 5 2021 lúc 20:30

dấu chấm ở giữa hai số là dấu nhân à?

Bình luận (0)
 Khách vãng lai đã xóa
LA
25 tháng 5 2021 lúc 20:31

ừ dấu chấm là dấu nhân

Bình luận (0)
 Khách vãng lai đã xóa