Chứng minh rằng ba đơn thức : \(-\frac{1}{17}x^4y^3;\frac{17}{19}xy^4;-2x^7y\)không thể có cùng giá trị âm
1. Tìm số tự nhiên n biết \(15x^4y^n.\left(-2x^5y^9\right)=30x^9y^{17}\)
2.
a) Cho 3 đơn thức \(\frac{1}{5}x^6y^4;\frac{5}{7}x^2y^5;\frac{7}{13}x^{10}y^{11}\). Chứng minh rằng khi x, y lấy những giá trị khác 0 thì trong 3 đơn thức có ít nhất một đơn thức có giá trị dương.
b) Cho 3 đơn thức \(\frac{-2}{7}x^5y^3;\frac{-1}{2}x^4y;\frac{-7}{15}x^{13}y^6\). Chứng minh rằng khi x, y lấy những giá trị khác 0 thì trong 3 đơn thức có ít nhất một đơn thức có giá trị âm.
Bài 1 :
Ta có : \(15x^4y^n.\left(-2x^5y^9\right)=30x^9y^{17}\)
=> \(15x^4.\left(-y\right)^n.\left(-2\right).\left(-x\right)^5.\left(-y\right)^9=30\left(-x\right)^9.\left(-y\right)^{17}\)
=> \(30\left(-x\right)^9.\left(-y\right)^{n+9}=30.\left(-x\right)^9\left(-y\right)^{17}\)
=> \(\left(x\right)^9.\left(-y\right)^{n+9}=\left(-x\right)^9\left(-y\right)^{17}\)
=> \(x^9y^{n+9}=x^9y^{17}\)
- TH1 : \(x,y=0\)
=> \(0^{n+9}=0^{17}\) ( Luôn đúng \(\forall n\) )
=> \(n\in R\)
- TH2 : \(x,y\ne0\)
=> \(y^{n+9}=y^{17}\)
=> \(n+9=17\)
=> \(n=8\)
Nguyễn Ngọc Lộc Nguyễn Lê Phước Thịnh?Amanda?Trần Quốc KhanhPhạm Lan HươngNatsu Dragneel 2005Trung NguyenNo choice teenPhạm Thị Diệu HuyềnTrên con đường thành công không có dấu chân của kẻ lười biếng giúp em với ạ
\(2a,\) Ta xét tích ba đơn thức sau:
\(\left(\frac{1}{5}x^6y^4\right)\left(\frac{5}{7}x^2y^5\right)\left(\frac{7}{13}x^{10}y^{11}\right)=\frac{1}{13}x^{18}y^{20}>0\forall x,y\ne0\)
\(\RightarrowĐpcm\)
\(b,\) Ta có: \(\left(-\frac{2}{7}x^5y^3\right)\left(\frac{-1}{2}x^4y\right)\left(\frac{-7}{15}x^{13}y^6\right)=-\frac{1}{15}x^{12}y^{20}< 0\forall x,y\ne0\)
\(\RightarrowĐpcm\)
Chứng minh rằng ba đơn thức :-1/3x^4y^3;-3/5x^3y^4 và 1/2xy^3 không thể cùng nhận giá trị âm tại cùng các giá trị nào đó của x và y
\(TH1:\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3< 0\\-\dfrac{3}{5}x^3y^4< 0\\\dfrac{1}{2}xy^3>0\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3>0\\-\dfrac{3}{5}x^3y^4>0\\\dfrac{1}{2}xy^3>0\end{matrix}\right.\)
\(TH3:\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3>0\\-\dfrac{3}{5}x^3y^4< 0\\\dfrac{1}{2}xy^3< 0\end{matrix}\right.\)
\(TH4:\left\{{}\begin{matrix}x< 0\\y>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{3}x^4y^3< 0\\-\dfrac{3}{5}x^3y^4>0\\\dfrac{1}{2}xy^3< 0\end{matrix}\right.\)
Vậy ....
Cho ba đơn thức \(-\frac{3}{5}x^2y^5z^3;-\frac{2}{5}x^3yzt^2;\frac{5}{7}x^{11}y^2z^2\)
Chứng minh rằng trong ba đơn thức có ít nhất một đơn thức có giá trị không dương
chứng minh 3 đơn thức sau luôn dương:
\(\frac{-1}{4}x^3y^4;-\frac{4}{5}x^4y^3;\frac{1}{2}xy\)
ta có \(\frac{-1}{4}x^3y^4.\frac{-4}{5}x^4y^3.\frac{1}{2}xy=\frac{1}{10}x^8y^8\)
vì x8y8> hoặc = 0
=>1/10x^8y^8> hoặc =0
vây 3 đơn thức này luôn luôn có giá trị dương
h cua 3 so > 0 thi ba so đó đều > 0 ak ??????? (VD: ba so: -1; -2; 3 ma h 3 so nay van > 0 do thoi)
chứng minh 3 đơn thức\(\frac{-1}{4}x^3y^4\),\(\frac{-4}{5}x^4y^3\)và \(\frac{1}{2}xy\)không thể cùng âm
xét tích :
\(\left(\frac{-1}{4}x^3y^4\right).\left(\frac{-4}{5}x^4y^3\right).\left(\frac{1}{2}xy\right)\)
\(=\frac{1}{10}x^8y^8\)
vì x8 \(\ge\)0 ; y8 \(\ge\)0 nên \(\frac{1}{10}x^8y^8\)\(\ge\)0 nên ....
cho 3 đơn thức \(-\frac{1}{3}x^4y^3;-\frac{3}{5}x^3y^4;\frac{1}{2}xy^3\) chứng minh rẳng chúng không thể cùng nhận giá trị âm với các giá trị x;y nào đó
Chứng minh rằng ba biểu thức -1/2 x^3y^4; -x^4y^3; 2xy không thể cùng có giá trị âm
Chứng minh rằng ba biểu thức -1/2 x^3y^4; -x^4y^3; 2xy không thể cùng có giá trị âm
Cho các đơn thức: -1/2019 x^4.y.z^3; 108.x^3.y^2.z; 304.x^5.y.z^4. Chứng minh rằng: trong ba đơn thức đó có ít nhất một đơn thức có giá trị dương
đây
suốt ngày hỏi
Đặt ba đơn thức lần lượt là a,b,c
ta có:a*b*c= (-1/2019.x^4.y.z^3).(108.x^3.y^2.z).(x^5.y.z^4)
d=(-1/2019.108.304).(x^4.x^3.x^5.y.y^2.y.z^3.z.z^4)
d=-32832.x^12.y^4.z^8
=> d<0 với mọi x,y,z do x^12.y^4.z^8 luôn dương
=> đpcm