cho các số nguyên a , b , c thỏa mãn a < 2b ; b < 3c ; c < 4d ; d < 5 . tìm giá trị lớn nhất của a
GIÚP TỚ LÀM VỚI
cho các số nguyên a,b,c thỏa mãn : a/2a+1 + b/2b+1+c/2c+1=1
tính r =1/2a+1 + 1/2b+1+1/2c+1
cho các số nguyên a,b,c thỏa mãn : a/2a+1 + b/2b+1+c/2c+1=1
tính r =1/2a+1 + 1/2b+1+1/2c+1
cho các số nguyên dương a , b , c thỏa mãn a/b=2b/c=4c/a . Rút gọn phân số sau T=ab+bc+ca/a^2+b^2+c^2
tìm các số nguyên dương a,b,c thỏa mãn a+b+c = 2022 và 2a/b+c ; 2b/c+a ; 2c/a+b là số nguyên
cảm ơn giúp tớ đi
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
cho đa thức P(x) có hệ số nguyên và a,b,c là các số nguyên thỏa mãn P(a) =1 P(b) =2 P(c)
=3 Chứng minh rằng a=c=2b
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
Các thần đồng đâu hết rùi
Giải hộc cái bài nào
Cho các số nguyên dương a,b,c thỏa mãn \(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}\)
Chứng minh rằng tổng (a+b+c) chia hết cho 3
ap dung tinh chat ti le thuc ta co a/a+2b=b/b+2c+=c/c+2a=a+b+c/a+2b+b+2c+c+2a=1/3
do đóa/a+2b=b/b+2c=c/c+2a=1/3
hay a chia 3 = a+2b
b chia 3 =b+2c
c chia 3 =c+2a
ma a,b,c la cac so nguyen duong nen a,b,c chia het cho 3
nen a+b+c chia het 3
Bài làm:
Ta có: \(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Xét: \(\frac{a}{a+2b}=\frac{1}{3}\Leftrightarrow3a=a+2b\Leftrightarrow2a=2b\Rightarrow a=b\)
Tương tự xét các phân thức còn lại ta chứng minh được: \(a=b=c\)
Thay \(\hept{\begin{cases}b=a\\c=a\end{cases}}\)ta được \(a+b+c=3a⋮3\)
\(\Rightarrow a+b+c⋮3\)
1) Cho các số thực \(a,b,c\) thỏa mãn \(a^3+b^3+c^3=3abc\) và \(a+b+c\ne0\)
Tính giá trị: \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\)
2) Tìm các số dương \(x,y\) thỏa mãn: \(3^x=y^2+2y\)
1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\) \(\left(a;b;c\in R\right)\)
Ta có :
\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)
Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được
\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)
\(3^x=y^2+2y\left(x;y>0\right)\)
\(\Leftrightarrow3^x+1=y^2+2y+1\)
\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)
- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)
- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)
- Với \(x>1;y>1\)
\(\left(y+1\right)^2\) là 1 số chính phương
\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương
\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)
Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài
Tìm các cặp số nguyên (a,b) thỏa mãn \(a^2+ab+b^2=a^2b^2\)