Cho hàm số f(x1 . x2) = f(x1) . f(x2) và f(2)=5 . Tính f(8)
cho hàm số f(x) xác định với mọi x thoả mãn f(x1.x2)=f(x1).f(x2) và f(2)=0,75 tính f(8)
cho hàm số f(x) xác định với mọi x thoả mãn f(x1.x2)=f(x1).f(x2) và f(2)=0,75 tính f(8)
1, chứng minh rằng: a^2+b^2>hoặc=2*a*b
2, cho f(z) là hàm số xác định với mọi x, thõa mãn: f(x1*x2)=f(x1)*f(x2) và f(2)=5. Tính f(8)
cho hàm số f(x) xác định với mọi x thỏa mãn điều kiện f(x1x2)=f(x1).f(x2)=5 và f(2)=5.Tính f(8)
Giải:
Vì f(x1x2)=f(x1).f(x2) nên ta có:
f(4)=f(2.2)=f(2).f(2)=5.5=25
Mà:
f(2)=5
⇔f(8)=f(4.2)=f(4).f(2)=25.5=125
Vậy: f(8)=125
Cho hàm số y = f(x) xác định với mọi x thuộc Q và có tính chất f(x1) + f(x2) = f(x1+ x2) với mọi x1 x2 thuộc Q . CMR f(-x) = -f (x )
Cho hàm số y = f(x)= 3x +2
a) Tính f(1), f(2), f(0)
b) cho x1<x2 tìm mối quan hệ của f(x1) ), f( x2)
\(f\left(1\right)=3\cdot1+2=5\)
\(f\left(2\right)=3\cdot2+2=7\)
\(f\left(0\right)=3\cdot0+2=2\)
\(b,f\left(x_1\right)< f\left(x_2\right)\) do hs đồng biến
a). Thay f(1) vào f(x), ta có:
y=f(1)= 3 .1 + 2 = 5
y=f(2)= 3 .2 + 2 = 8
y=f(0)= 3 .0 + 2 = 2
cho hàm số f(x) xác định với mọi x khác 0 thỏa mãn
a) f(1)=1
b)f(1/x)=1/x^2.f(x)
c) f(x1+x2)=f(x1)+f(x2) với mọi x1 , x2 khác 0 , x1+x2 khác 0 . CTR f(5/7)=5/7
Theo c) \(f\left(\frac{5}{7}\right)=f\left(\frac{2}{7}+\frac{3}{7}\right)=f\left(\frac{2}{7}\right)+f\left(\frac{3}{7}\right)\)
\(f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}+\frac{1}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{1}{7}\right)=2.f\left(\frac{1}{7}\right)\)
\(f\left(\frac{3}{7}\right)=f\left(\frac{1}{7}+\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+2f\left(\frac{1}{7}\right)=3.f\left(\frac{1}{7}\right)\)
\(\implies\)\(f\left(\frac{5}{7}\right)=5.f\left(\frac{1}{7}\right)\) (1)
Theo b) \(f\left(\frac{1}{7}\right)=\frac{1}{7^2}.f\left(7\right)\) (2)
Theo c) \(f\left(7\right)=f\left(3+4\right)=f\left(3\right)+f\left(4\right)\)
\(=2.f\left(3\right)+f\left(1\right)\)
\(=6.f\left(1\right)+f\left(1\right)\)
\(=7.f\left(1\right)\)
Theo a)\(f\left(1\right)=1\)\(\implies\)\(f\left(7\right)=7\) (3)
Từ (1);(2);(3)
\(\implies\) \(f\left(\frac{5}{7}\right)=\frac{5}{7}\)
1) đa thức f(x)=x^6-x^3+x^2-x+1 có hay ko có nghiệm trên tập hợp số thưc r
2)cho hàm số f(x) xác định với mọi x khác thỏa mãn : f(1)=1 và f(x1 +x2)=f(x1)+f (x2)với mọi x1,x2 jkhacs 0 , x1 + x2 cũng khác 0 và f (1/x)=1/x^2 . f(x) . CMR : f)5/7)=5/7
Cho f(x) xác định với mọi x thoả mãn
f(x1.x2)= f(x1) . f(x2) và f(2)=5 .Tính f(8)
Cho hàm số f(x) xác định với mọi x thỏa mãn điều kiện f(x1x2)=f(x1)f(x2)=5 và f(2)=5. Tínhf(8)