tìm các giá trị của m để hàm số
a) \(y=\dfrac{mx+25}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
b) \(y=\dfrac{x+2}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;-5\right)\)
tìm các giá trị của m để hàm số
a) \(y=\dfrac{mx+25}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
b) \(y=\dfrac{x+2}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;-5\right)\)
Cho hàm số \(y = \frac{1}{x}\). Chứng tỏ hàm số đã cho:
a) Nghịch biến trên khoảng \(\left( {0; + \infty } \right)\);
b) Nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\).
a) Tập xác định \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).
Lấy \({x_1},{x_2} \in \left( {0; + \infty } \right)\) sao cho \({x_1} < {x_2}\).
Xét \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{{x_1}}} - \frac{1}{{{x_2}}} = \frac{{{x_2} - {x_1}}}{{{x_1}{x_2}}}\)
Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\)
\({x_1},{x_2} \in \left( {0; + \infty } \right) \Rightarrow {x_1}{x_2} > 0\)
\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \Leftrightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)
Vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\).
b) Lấy \({x_1},{x_2} \in \left( { - \infty ;0} \right)\) sao cho \({x_1} < {x_2}\).
Xét \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{{x_1}}} - \frac{1}{{{x_2}}} = \frac{{{x_2} - {x_1}}}{{{x_1}{x_2}}}\)
Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\)
\({x_1},{x_2} \in \left( { - \infty ;0} \right) \Rightarrow {x_1}{x_2} > 0\)(Cùng dấu âm nên tích cũng âm)
\( \Rightarrow f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \Leftrightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\)
Vậy hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\).
Cho hàm số \(y=-x^3+\left(m+1\right)x^2+m\left(m-3\right)x-\frac{1}{3}\left(1\right)\), với m là tham số thực. Tìm m để hàm số (1) nghịch biến trên khoảng \(\left(1;+\infty\right)\)
Hàm số nghịch biến trên khoảng \(\left(1;+\infty\right)\)\(\Rightarrow y'\le0,x\in\left(1;+\infty\right)\) (*)
Trường hợp 1 : Nếu \(\Delta'\le0\Leftrightarrow4m^2-7m+1\le0\Leftrightarrow\frac{7-\sqrt{33}}{8}\le m\le\frac{7+\sqrt{33}}{8}\) thì theo định lí về dấu tam thức bậc 2 ta có \(y'\le0,x\in R\Rightarrow\) (*) luôn đúng.
Trường hợp 2 : Nếu \(\Delta'>0\Leftrightarrow4m^2-7m+1>0\Leftrightarrow m\le\frac{7-\sqrt{33}}{8}\) hoặc \(m\ge\frac{7+\sqrt{33}}{8}\)thì (*) đúng
\(\Leftrightarrow\) phương trình y'=0 có 2 nghiệm phân biệt \(x_1,x_2\) mà \(x_1<\)\(x_2\) và thỏa mãn x1 < x2 <= 1
\(\Leftrightarrow\frac{1-\sqrt{5}}{2}\le m\le\frac{7-\sqrt{33}}{8}\) hoặc \(\frac{7-\sqrt{33}}{8}\le m\le\frac{1-\sqrt{5}}{2}\)
Kết hợp trường hợp 1 và trường hợp 2 ta có
\(\Leftrightarrow\frac{1-\sqrt{5}}{2}\le m\le\frac{7-\sqrt{33}}{8}\) hoặc \(\frac{7-\sqrt{33}}{8}\le m\le\frac{1-\sqrt{5}}{2}\) thì hàm số nghịch biến trên khoảng \(\left(1;+\infty\right)\)
Có bao nhiêu giá trị nguyên của tham số m \(\in\left(-20;20\right)\) để hàm số y = \(\dfrac{x-1}{x-m}\) nghịch biến trên khoảng \(\left(-\infty;2\right)\)
\(y'=\dfrac{x-m-x+1}{\left(x-m\right)^2}=\dfrac{1-m}{\left(x-m\right)^2}\)
Hàm số nghịch biến trên khoảng \(\left(-\infty;2\right)\Leftrightarrow y'< 0\forall x\in\left(-\infty;2\right)\Leftrightarrow\left\{{}\begin{matrix}1-m< 0\\x\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ge2\end{matrix}\right.\Rightarrow m\ge2\)
Có 19-2+1=18 giá trị nguyên của m thỏa mãn
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
Lời giải:
Để hàm $y$ nghịch biến thì
\(y'=\frac{m^2-4}{(m+x)^2}<0\Leftrightarrow m^2-4<0\Leftrightarrow -2< m<2(1)\)
Mặt khác \(x\in(-\infty,1)\) nên để hàm số xác định, tức \(x+m\neq 0\Rightarrow m\neq (-1,+\infty)\), tức là \(m\leq -1(2) \)
Kết hợp \((1),(2)\Rightarrow -2 < m \leq -1\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
Hàm số \(y=\dfrac{mx+4}{x+m}\)có TXĐ: \(D=R\backslash\left\{-m\right\}\)
\(y'=\dfrac{m^2-4}{\left(x+m\right)^2}\)
Với \(m=\pm2\)thì \(y'=0,\forall x\ne\left\{-2;2\right\}\) hàm số đã cho trở thành hàm hằng.
Vậy hàm số nghịch biến khi\(y'< 0\Leftrightarrow m^2-4< 0\Leftrightarrow-2< m< 2\)
Khi đó hàm số nghịch biến trên các khoảng (−∞;−m)và (−m;+∞).
Để hàm số nghịch biến trên khoảng (−∞;1) thì \(1\le-m\Leftrightarrow m\le1\)
Vậy \(-2< m\le-1\) thỏa yêu cầu bài toán.