bài 1: cho hàn số y=fx = ax+b , Tìm a và b biết f(0)=3 , f(-1)=4
bài 2 : vẽ các điểm a(-2;2) b,(2;2) C (2;-2 ) D(-2;2) .
rên hệ trục tọa độ. Hỏi tứ giác abcd là hình gì? Tính chu vi tứ giác abcd
Bài 12: Cho hàm số y=f(x)=ax
a) Biết a = 2 tính f(1);f(-2);f(-4)
b) Tìm a biết f(2)=4 ; vẽ đồ thị hàm số khi a = 2; a = -3.
c) Trong các điểm sau điểm nào thuộc đồ thị của hàm số khi a = 2
A( 1; 4) B(-1; -2) C(-2; 4) D( -2; -4)
Bài 9. a) Vẽ đồ thị của hàm số y = - 2x
b) Điểm sau điểm nào thuộc đồ thị hàm số: A (-2; 4); B(-1; -2)
Bài 10: Cho hàm số y = f(x) = ax (a # 0)
a)Tìm a biết đồ thị hàm số đi qua điểm A( 1; -3)
b)Vẽ đồ thị ứng với giá trị a vừa tìm được
MỌI NGƯỜI GIÚP MK VS Ạ MK ĐG CẦN GẤP Ạ!!!
Bài 9:
b: Điểm A thuộc đồ thị vì \(y_A=4=-2\cdot\left(-2\right)=-2\cdot x_A\)
Bài 10:
a: Thay x=1 và y=-3 vào (d), ta được:
\(a\cdot1=-3\)
hay a=-3
Bài 1 : Cho hàm số y = f(x)=\(\frac{a}{2}.x+b\)
a. Tìm a và b biết các điểm sau thuộc đồ thị hàm số : A( -4; -3 ) ; B(0; -3)
b. Tính f(1), f(2) , f(-2), f(-1)
c. Tìm x biết y bằng 4
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{2}a\cdot\left(-4\right)+b=-3\\\dfrac{1}{2}a\cdot0+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\b=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=0\end{matrix}\right.\)
Vậy: f(x)=-3
b: f(1)=f(2)=f(-2)=f(-1)=-3
c: Đặt y=4
=>f(x)=4
=>-3=4(vô lý)
Bài 1 : Cho hàm số y=ax (a # 0) có đồ thị đi qua điểm A (2;1).
a) xác định hệ số a b) vẽ đồ thị hàm số trên với a vừa tìm được.
Bài 2 Cho Hàm Số y = f(x) = 2 . x
a) Vẽ đồ thị hàm số b) Tìm f(1) ; f(-2).
bai 2
Pan tự ve nha
f(1)=2x
=> f(1)=2
f(-2)=2x
=>f(-2)=-4
xong........!!!!!!!!!!!!!!!!!!!!
Câu 1 mk gửi cho pạn rùi đó nha
Mọi người giúp em/ mình mấy bài này được ko ạ, cảm ơn nhìu ạ ^_^ :3 <3 ^3^ :>
Bài 1: Xác định a và b để nghiệm của f(x) = (x-3)(x-4) cũng là nghiệm của g(x)= x2 - ax +b
Bài 2: Các số x,y (x,y khác 0) thoả mãn các điều kiện x2y +5= -3 và xy2 -7= 1 . Tìm x,y
Bài 3: Cho đa thức f(x) = x2 +4x -5
a) Số -5 có phải nghiệm của đa thức f(x) ko?
b) Viết tập hợp S tất cả các nghiệm của f(x)
Bài 4: Thu gọn rồi tìm nghiệm của các đa thức sau:
a) f(x) = x(1-2x) + (2x -x +4)
b) g(x)= x(x-5) -x(x+2) +7x
c) h(x) = x(x-1) +1
Bài 5: Cho
f(x)=x8 -101x7+101x6-101x5+...+101x2 -101x +25 . Tính f(100)
Bài 6: Cho f(x) = ax2 + bx +c . Biết 7a +b = 0
Hỏi f(10) , f(-3) có thể là số âm ko?
Bài 7: Tam thức bậc hai là đa thức có dạng f(x) = ax2+ bx +c với a,b,c là hằng số khác 0
Hãy xác định các hệ số a,b biết f(1)=2;f(3)=8
Bài 8: Cho f(x)= ax3 + 4x(x -1) +8
g(x) = x3 -4x(bx +1) +c -3
trong đó a,b,c là hăngf . Xác định a,b,c để f(x) = g(x)
Bài 9: Cho f(x) = 2x2 + ax +4 ( a là hằng)
g(x)= x2 -5x - b ( b là hằng)
Tìm các hệ số a,b sao cho f(1)=g(2) ;f(-1)= f(5)
rtyuiytre
a) Cho hàm số y = f(x) = ax - 3. Tìm a biết f(2) = 5.
b) Cho hàm số y = f(x) = ax + b. Tìm a và b biết f(0) = 3 và f(1) = 4
a ) Ta có : f(2) = 5
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(2\right)\\\text{ax}-3=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\a.2-3=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\a=4\end{cases}}\)
Vậy a = 4
b ) Ta có : f(0) = 3
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(0\right)\\\text{ax}+b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\a.0+b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\b=3\end{cases}}\) ( 1 )
Ta có : f ( 1 ) = 4
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(1\right)\\\text{ax}+b=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\a.1+b=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\a+b=4\end{cases}}\) ( 2 )
Thay b = 3 ở ( 1 ) vào a+b=4 ở ( 2 ) ta được : a + 3 = 4
a = 1
Vậy a = 1 ; b = 3
bài 1 : vẽ đồ thị hàm số của y = f(x) = 4x
a, tìm f(2) ,f(-2),f(4),f(0)
b,giá trị của x khi y = -1,y =0 , y=2,5
bài 2 : cho hàm số y = -3x
a, vẽ đồ thị hàm số trên
b, các diểm M (-2 và 6) có thuộc đồ thị hàm số trên không
c, xác định tọa độ của điểm P nằm trên đồ thị biết tung độ của P là 5
Bài 1 :
Với x = 1 thì y = 4.1 = 4
Ta được \(A\left(1;4\right)\) thuộc đồ thị hàm số y = f(x) = 4x
Đường thẳng OA là đồ thị hàm số y = f(x) = 4x
a) Ta có : \(f\left(2\right)=4\cdot2=8\)
\(f\left(-2\right)=4\cdot\left(-2\right)=-8\)
\(f\left(4\right)=4\cdot4=16\)
\(f\left(0\right)=4\cdot0=0\)
b) +) y = -1 thì \(4x=-1\) => \(x=-\frac{1}{4}\)
+) y = 0 thì 4x = 0 => x = 0
+) y = 2,5 thì 4x = 2,5 => \(4x=\frac{5}{2}\)=> x = \(\frac{5}{8}\)
Bài 2 :
a) Vẽ tương tự như bài 1
b) Thay \(M\left(-2,6\right)\)vào đths y = -3x ta có :
y =(-3)(-2) = 6
=> Điểm M thuộc đths y = -3x
c) Thay tung độ của P là 5 vào đồ thị hàm số y = -3x ta có :
=> 5 = -3x => \(x=-\frac{5}{3}\)
Vậy tọa độ của điểm P là \(P\left(-\frac{5}{3};5\right)\)
Cho hàm số y= fx= Ax => 2x
1, khi a= 2
a, vẽ đo thị hàm số
b, tính f(0,5); f(3/4)
2, tìm hệ số a biết đồ thị đi qua điểm (4;-2)
Bài 2: Cho hàm số y = f(x) = ax + b. Tìm a,b biết f(1) = 2 và f(-1) = \(\sqrt{2}\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\-a+b=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=2+\sqrt{2}\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\sqrt{2}+1\\a=1-\sqrt{2}\end{matrix}\right.\)