cho A:1+5+5^2+.....+5^9/1+5+5^2+.........+5^8
B:1+3+3^2+.....+3^9/1+3+3^2+.....3^8
so sanh A va B
so sanh A va B biet A=1+5+5^2+5^3+...+5^9/1+5+5^2+5^3+...+5^8 va B=1+3+3^2+3^3+...+3^9/1+3+3^2+3^3+...+3^8
so sanh
A=1+5+5^2+....++5^9 / 1+5+5^2+...+3^8 va B=1+3+3^2+...+3^9 / 1+3+3^2+...+3^8
So sanh A va B
So sanh A va B.
So sanh A va B, biet :
a)\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8};B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
b)\(A=\frac{7^{10}}{1+7+7^2+...+7^9};B=\frac{5^{10}}{1+5+5^2+...+5^9}\)
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)
\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)
\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)
Có: \(\frac{1}{1+5+5^2+...+5^8}>0\) và \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)
\(\Rightarrow A>B\)
cho a= 1+3+3^2+...+3^12 / 1+3+3^2+...+3^13 va b = 1+5+5^2+5^3+...+5^12 / 1+5+5^2+...+5^13 so sanh a va b
1 a, 3 va 1/5 - 2 va 1/6 + 1/5
b, 5 va 12/13 - 2 va 15/26 + 1/26
c, 7 va 1/12 + 1/12 - 6 va 1/4
2 tinh gia tri bieu thuc
a, 3 va 2/9 - [1 va 5/8 + 1 va 2/9 ] - 3/8
b, 4 va 2/5 - 1 va 3/7 - 1 va 4/7 + 1/5
c, 1 va 9/12 - 5/4 - 1/2
3 tinh
a, 6 nhan 7 nhan 8 nhan 9 nhan 1 tren 18 nhan 16 nhan 14 nhan 12 nhan 2
b, 4 nhan 15 nhan 9 nhan 24 tren 3 nhan 12 nhan 8 nhan 5
4 rut gon cac phan so
a, 96/150 ; 255/408 ; 630/224
b, 1515/1717; 352352/470470; 200620062006/200520052005
5 so sanh cac phan so
a, 7/9 va 9/7 ; b, 135/120 va 13/8; c, 3535/4848 va 5/8 ; d, 650650/480480 va 222222/144144
6, so sanh hai phan so
a, 2005/2006 va 2006/2007 ; b, 2008/2007 va 2007/2006
cac ban lam tung buoc nha
so sanh
\(\frac{1+5+5^2+......+5^9}{1+5+5^2+......+5^8}\) va \(\frac{1+3+3^2+......+3^9}{1+3+3^2+......+3^8}\)
Ta đặt \(A=1+5+5^2+......+5^9\Rightarrow5A=5+5^2+...+5^9+5^{10}\)
\(\Rightarrow4A=5^{10}-1\Rightarrow A=\frac{5^{10}-1}{4}\)
tTương tự \(B=1+5+5^2+......+5^8\Rightarrow B=\frac{5^9-1}{4}\)
\(C=1+3+3^2+......+3^9\Rightarrow C=\frac{3^{10}-1}{3}\)
\(D=1+3+3^2+......+3^8\Rightarrow D=\frac{3^9-1}{3}\)
Vậy \(\frac{A}{B}=\frac{5^{10}-1}{5^9-1}=\frac{5\left(5^9-1\right)+4}{5^9-1}=5+\frac{4}{5^9-1}\)
\(\frac{C}{D}=\frac{3^{10}-1}{3^9-1}=\frac{3\left(3^9-1\right)+3}{3^9-1}=3+\frac{3}{3^9-1}\)
Ta thấy \(\frac{3}{3^9-1}< 1\Rightarrow3+\frac{3}{3^9-1}< 4< 5< 5+\frac{5}{5^9-1}\)
Vậy \(\frac{A}{B}>\frac{C}{D}\) hay \(\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}>\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
a) (2/3 + 1/5)²: (2/5 - 1/3)
b) (2va 1/3 - 1va 3/5) * (2va 4/9: 3 va 1/2)²
c) (2/3 + 1/4 - 2/5): (4/5 -3/7)
a) \(\left(\frac{2}{3}+\frac{1}{5}\right)^2:\left(\frac{2}{5}-\frac{1}{3}\right)\)
\(=\left(\frac{13}{15}^2\right)\cdot15\)
\(=\frac{169\cdot15}{225}\)
\(=\frac{169}{15}\)
b)
\(\left(2\frac{1}{3}-1\frac{3}{5}\right)\cdot\left(2\frac{4}{9}:3\frac{1}{2}\right)^2\)
\(=\left(\frac{7}{3}-\frac{8}{5}\right)\cdot\left(\frac{22}{9}\cdot\frac{7}{2}\right)^2\)
\(=\frac{11\cdot5929}{15\cdot81}\)
\(=53,6781893\)