Những câu hỏi liên quan
HD
Xem chi tiết
NH
Xem chi tiết
AH
30 tháng 11 2021 lúc 8:35

Lời giải:
Áp dụng BĐT AM-GM:

$\text{VT}=\sqrt{ab+c(a+b+c)}+\sqrt{bc+a(a+b+c)}+\sqrt{ca+b(a+b+c)}$

$=\sqrt{(c+a)(c+b)}+\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}$
$\leq \frac{c+a+c+b}{2}+\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}$

$=2(a+b+c)=2$
Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

Bình luận (0)
NB
Xem chi tiết
TH
8 tháng 1 2024 lúc 21:10

pip install pygame

 

Bình luận (0)
HT
Xem chi tiết
TN
15 tháng 3 2017 lúc 22:11

Ta chứng minh điều ngược lại đúng mà đây là BĐT Nesbitt tìm trên mạng đầy cách c/m

Bình luận (0)
HT
23 tháng 3 2017 lúc 6:43

ừa , thanks bạn nhé ^^

Bình luận (0)
LT
Xem chi tiết
MH
8 tháng 3 2023 lúc 22:04

Ta có: \(\dfrac{a^3+ab^2}{a^2+b+b^2}=a-\dfrac{ab}{a^2+b+b^2}\ge a-\dfrac{\sqrt[3]{a}}{3}\)

Tương tự: 

\(\Rightarrow VT\ge a+b+c-\dfrac{\Sigma\sqrt[3]{a}}{3}=3-\dfrac{\Sigma\sqrt[3]{a}}{3}\)

Áp dụng BĐT cô si chi 3 số dương, ta có:

\(a+1+1\ge3\sqrt[3]{a}\Rightarrow\dfrac{\sqrt[3]{a}}{3}\le\dfrac{a+2}{9}\)

Tương tự:

\(\Rightarrow VT\ge3-\dfrac{a+b+c+6}{9}=3-1=2\left(đpcm\right)\)

Dấu "=" xảy ra <=> a=b=c=1

Bình luận (0)
BV
Xem chi tiết
TV
Xem chi tiết
AH
8 tháng 3 2021 lúc 21:32

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$

$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

Bình luận (0)
AH
8 tháng 3 2021 lúc 21:36

Bài 2: 

Áp dụng BĐT Bunhiacopxky:

$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$

$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$

$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$

$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>

 

Bình luận (0)
AH
8 tháng 3 2021 lúc 21:38

Bài 3:

Áp dụng BĐT Bunhiacopxky:

$2=(a^2+b^2)(1+1)\geq (a+b)^2\Rightarrow a+b\leq \sqrt{2}$

$(a\sqrt{1+a}+b\sqrt{1+b})^2\leq (a^2+b^2)(1+a+1+b)$

$=2+a+b\leq 2+\sqrt{2}$

$\Rightarrow a\sqrt{1+a}+b\sqrt{1+b}\leq \sqrt{2+\sqrt{2}}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{\sqrt{2}}$

 

Bình luận (0)
TT
Xem chi tiết
NK
Xem chi tiết
H24
20 tháng 9 2019 lúc 20:15

Áp dụng BĐT AM - GM:

\(a+b+c\ge3\sqrt[3]{abc}\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Rightarrow3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)

Bình luận (0)