Những câu hỏi liên quan
NH
Xem chi tiết
H24
24 tháng 4 2019 lúc 12:25

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)

\(1-\frac{1}{x+1}=\frac{2008}{2009}\)

\(\frac{1}{x+1}=1-\frac{2008}{2009}=\frac{1}{2009}\)

\(\Rightarrow x+1=2009\)

\(\Leftrightarrow x=2008\)

Bình luận (0)
LE
Xem chi tiết
ND
Xem chi tiết
GC
4 tháng 5 2016 lúc 19:10

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009 }\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{x+1-1}{x+1}=\frac{2008}{2009}\)
\(\frac{x}{x+1}=\frac{2008}{2009}\)
\(2009x=2008\left(x+1\right)\)
\(2009x=2008x+2008\)
\(2009x-2008x=2008\)
\(x=2008\)
Vậy x=2008

Bình luận (0)
UI
4 tháng 5 2016 lúc 19:05

Ta có

1/x.(x+1) =2008-1/1.2-1/2.3-....

tự làm nhé!!

Bình luận (0)
H24
4 tháng 5 2016 lúc 19:07

=> \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) +...+\(\frac{1}{x\left(x+1\right)}\) = \(\frac{2008}{2009}\)

=> \(\frac{1}{1}\) - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) +...+ \(\frac{1}{x}\) - \(\frac{1}{x+1}\) = \(\frac{2008}{2009}\)

=> \(\frac{1}{1}\) - \(\frac{1}{x+1}\) = \(\frac{2008}{2009}\) => \(\frac{1}{x+1}\) = \(\frac{1}{1}\) - \(\frac{2008}{2009}\) = \(\frac{1}{2009}\) => x+1=2009 => x=2008. Vậy x=2008.

Bình luận (0)
TH
Xem chi tiết
LC
Xem chi tiết
CT
Xem chi tiết
DC
5 tháng 5 2016 lúc 21:18

=>1- 1/2 + 1/2 - 1/3+.....+1/x - 1/(x+1) = 2008/2009

=>1 - 1/(x+1) = 2008/2009

=>1 - 1/(x+1) =1-1/1009

=>1/(x+1)=1/2009

=>x+1=2009

=>x=2008.Vậy x=2008

Bình luận (0)
H24
Xem chi tiết
ZZ
Xem chi tiết
NM
12 tháng 5 2016 lúc 7:33

Đặt vế trái là A ta có:

\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)

\(\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)

\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow A=\frac{x-1}{x+1}\)

\(\Rightarrow\frac{x-1}{x+1}=\frac{2007}{2009}\Leftrightarrow x=2003\)
 

Bình luận (0)
DT
29 tháng 11 2022 lúc 22:20

\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow...

Bình luận (0)
DT
29 tháng 11 2022 lúc 22:21
12 tháng 5 2016 lúc 7:33  

Đặt vế trái là A ta có:

\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}

\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 5 2015 lúc 16:37

ta có: 1/3 + 1/6 + ... + 2/x(x+1) = 2/2.3 + 2/3.4 +.......2/x(x+1) = 2(1/2.3 +1/3.4 +.....+1/x(x+1)) = 2.(1/2-1/3+1/3-1/4+....+1/x-1/(x+1))= 2.(1/2-1/(x+1)) = 1-2/(x+1)

giải 1-2/(x+1) = 2007/2009 ta được x=2008

Bình luận (0)