Những câu hỏi liên quan
NA
Xem chi tiết
GD

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

Bình luận (0)
NT
15 tháng 10 2023 lúc 9:35

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

Bình luận (0)
PT
Xem chi tiết
LH
2 tháng 12 2015 lúc 8:33

B=\(x^2+3x+7\)

=>B= \(x^2+2\times\frac{3}{2}x+\frac{9}{4}+\frac{19}{4}\)

=>B=\(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)

\(\left(x+\frac{3}{2}\right)^2\ge0\)   (Với mọi x)

=>\(\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)   (Với mọi x )

Dấu "='' xảy ra  <=> \(x+\frac{3}{2}=0=>x=-\frac{3}{2}\)

Vậy min B bằng 19/4 <=>x=-3/2

Phần b thì mk làm đc n phần a hình như sai đề pn ạ !!!
 

Bình luận (0)
HH
Xem chi tiết
MH
27 tháng 1 2022 lúc 8:56

H=\(x^6-2x^3+x^2-2x+2\)

\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)

\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)

Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)

⇒ MinH=0 ⇔ \(x=1\)

Bình luận (0)
WS
Xem chi tiết
EC
8 tháng 9 2021 lúc 18:02

A= x2-4x+6 = (x-2)2+2 ≥ 2 

Dấu "=" xảy ra ⇔ x=2

B = 25x2+10x-3 = (5x+1)2-4 ≥ -4

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{5}\)

C = 5-6x+4x2 = \(\left(\dfrac{3}{2}-2x\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)

Bình luận (1)
T3
8 tháng 9 2021 lúc 17:48

A= 2x^2-4x+ 4+2

A=(x-2)2 + 2

A có giá trị nhỏ nhất khi (x-2)=0

x-2 =0

x=2

 B, C tự làm :>

Bình luận (0)
T3
8 tháng 9 2021 lúc 17:59

B=(5x)2+2.5.x-1-2

B=(5x-1)2-2

B có giá trị nhỏ nhất khi (5x-1)2=0

5x-1=0

x=1/5

C=(2x)2-2.3.x+9-4

C=(2x-3)2-4

C có giá trị nhỏ nhất khi (2x-3)2=0

2x-3=0

2x=3/2

Bình luận (0)
TB
Xem chi tiết
TK
4 tháng 7 2021 lúc 16:01

a,\(x^2-6x-17=x^2-2\cdot3x+9-26=\left(x-3\right)^2-26\ge-26\)

b, \(x^2-10x=x^2-2\cdot5x+25-25=\left(x-5\right)^2-25\ge-25\)

c,\(3x^2-12x+5=3x^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+12-7=\left(\sqrt{3}x-2\sqrt{3}\right)^2-7\ge-7\)

d,\(2x^2-x-1=2x^2-2\cdot\sqrt{2}x\cdot\dfrac{1}{2\sqrt{2}}+\dfrac{1}{8}-\dfrac{9}{8}=\left(\sqrt{2}x-\dfrac{1}{2\sqrt{2}}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

e,\(x^2+y^2-8x+4y+27=x^2-2\cdot4x+16+y^2+2\cdot2y+4+7=\left(x-4\right)^2+\left(y+2\right)^2+7\ge7\)

f,\(x\left(x-6\right)=x^2-6x=x^2-2\cdot3x+9-9=\left(x-3\right)^2-9\ge-9\)

h,\(\left(x-2\right)\cdot\left(x-5\right)\cdot\left(x^2-7x-10\right)=\left(x^2-7x+10\right)\left(x^2-7x-10\right)=\left(x^2-7x\right)^2-100\ge-100\)

Mình giúp tính biểu thức thôi

còn lại bạn tự làm nhé

Bình luận (0)
NA
Xem chi tiết
NT
13 tháng 7 2021 lúc 18:23

undefined

Bình luận (1)
NA
13 tháng 7 2021 lúc 18:22

cau A thay = bằng cộng ạ

 

Bình luận (0)
NH
13 tháng 7 2021 lúc 18:26

undefined

Bình luận (0)
PN
Xem chi tiết
HM
13 tháng 7 2021 lúc 10:34

123

456

789

101112

ht

Bình luận (0)
 Khách vãng lai đã xóa
PN
13 tháng 7 2021 lúc 11:02

mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii

Bình luận (0)
 Khách vãng lai đã xóa
PN
13 tháng 7 2021 lúc 14:43

Trả lời câu hỏi giùm tui với

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
ES
Xem chi tiết
H24
18 tháng 12 2018 lúc 17:10

\(B1,a,A=x^2-6x+11\)

               \(=\left(x^2-6x+9\right)+2\)

                \(=\left(x-3\right)^2+2\ge2\)

Dấu "=" <=> x=3

Vậy ..........

\(b,B=x^2-20x+101\)

        \(=\left(x^2-20x+100\right)+1\)

         \(=\left(x-10\right)^2+1\ge1\)

Dấu "=" <=> x = 10

Vậy .

\(2,a,A=4x-x^2+3\)

            \(=7-\left(x^2-4x+4\right)\)'

             \(=7-\left(x-2\right)^2\le7\)

Dấu ''='' <=> x = 2

Vậy .

\(b,B=-x^2+6x-11\)

       \(=-2-\left(x^2-6x+9\right)\)

        \(=-2-\left(x-3\right)^2\le-2\)

Dấu ""=" <=> x = 3

Vậy..

Bình luận (0)