Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PA
Xem chi tiết
NM
19 tháng 12 2015 lúc 10:42

\(S=\frac{2^{2013}}{2^{2013}+1}+\frac{2^{2012}}{2^{2012}+1}+....+\frac{1}{2^{2012}+1}+\frac{1}{2^{2013}+1}\)

=(\(\frac{2^{2013}}{2^{2013}+1}+\frac{1}{2^{2013}+1}\))+(\(\frac{2^{2012}}{2^{2012}+1}+\frac{1}{2^{2012}+1}\))+...+  \(\frac{1}{2}\)  ( có 2013 dấu ngoặc )

= 1+ 1+.....+ \(\frac{1}{2}\)  = 2013\(\frac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
NT
16 tháng 8 2017 lúc 22:36

vô câu hỏi tương tự ấy

Bình luận (0)
H24
16 tháng 1 2018 lúc 17:07

br258 / 6.18 dư 3 , khi chia 12 ,3 , 21 dư 6 vậy br = 26 .1 / 655

Bình luận (0)
TC
Xem chi tiết
TK
Xem chi tiết
HL
26 tháng 3 2017 lúc 20:24

\(TA-CO':\)

\(A=\frac{4+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}{7+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}\)

\(A=\frac{4\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}{7\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}\)

\(A=\frac{4}{7}\)

\(B=\frac{1+2+...+2^{2013}}{2^{2015}-2}\)

ĐẶT \(C=1+2+...+2^{2013}\)

\(\Rightarrow2C=2+2^2+...+2^{2014}\)

\(\Rightarrow2C-C=\left(2+2^2+...+2^{2014}\right)-\left(1+2+...+2^{2013}\right)\)

\(\Rightarrow C=2^{2014}-2\)

\(\Rightarrow B=\frac{2^{2014}-1}{2^{2015}-2}\)

\(B=\frac{2^{2014}-1}{2\left(2^{2014}-1\right)}\)

\(B=\frac{1}{2}\)

\(\Rightarrow A-B=\frac{3}{7}-\frac{1}{2}=\frac{6}{14}-\frac{7}{14}\)

\(A-B=\frac{6-7}{14}=\frac{-1}{14}\)

VẬY, \(A-B=\frac{-1}{14}\)

Bình luận (0)
HA
Xem chi tiết
NM
10 tháng 12 2015 lúc 19:48

\(A=\frac{T}{M}\)

\(M=\frac{2012}{2}+1+\frac{2011}{3}+1+.....+\frac{1}{2013}+1=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}\)

     \(=2014\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)=2014.T\)

\(A=\frac{T}{M}=\frac{T}{2014.T}=\frac{1}{2014}\)

Bình luận (0)
HA
Xem chi tiết
VP
10 tháng 12 2015 lúc 19:14

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2014}{2}+\frac{2014}{3}+\frac{2014}{4}+...+\frac{2014}{2013}}\)=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}=\frac{1}{2014}\)

bn xem kết quả có đúng ko?

Bình luận (0)
HQ
10 tháng 12 2015 lúc 18:45

bấm máy tính ra kết quả ai trả làm được phải làm cách giải mới khó

Bình luận (0)
DN
Xem chi tiết
HN
1 tháng 12 2016 lúc 10:54

Xét với n là số nguyên thì : \(\frac{1}{2^{-n}+1}+\frac{1}{2^n+1}=\frac{1}{\frac{1}{2^n}+1}+\frac{1}{2^n+1}=\frac{2^n}{2^n+1}+\frac{1}{2^n+1}=\frac{2^n+1}{2^n+1}=1\)

Vậy ta nhóm hợp lí như sau : 

\(S=\left(\frac{1}{2^{-2013}+1}+\frac{1}{2^{2013}+1}\right)+\left(\frac{1}{2^{-2012}+1}+\frac{1}{2^{2012}+1}\right)+...+\left(\frac{1}{2^{-1}+1}+\frac{1}{2^1+1}\right)+\frac{1}{2^0+1}\)

\(=1+1+...+1+\frac{1}{2}\) (2013 số hạng 1)

\(=2013+\frac{1}{2}\)

Bình luận (0)
TP
Xem chi tiết
DB
Xem chi tiết
CH
8 tháng 5 2017 lúc 15:16

Ta có : 1 + 2 + 3 + ... + n = \(\frac{\left(n+1\right)n}{2}\)

Vậy nên : \(A=2013+\frac{2013}{\frac{3.2}{2}}+\frac{2013}{\frac{4.3}{2}}+...+\frac{2013}{\frac{2013.2012}{2}}\)

\(A=2013+\frac{4026}{2.3}+\frac{4016}{3.4}+...+\frac{4026}{2012.2013}\)

\(A=4026\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\right)\)

\(A=4026\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)

\(A=4026\left(1-\frac{1}{2013}\right)=4026.\frac{2012}{2013}=4024.\)

Bình luận (0)