Tính tổng S = \(\frac{1+2+2+2^2+2^3+...+2^{2012}}{1-2^{2013}}\)
CỨU TỚ VỚI
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tính tổng \(S=\frac{1}{2^{-2013}+1}+\frac{1}{2^{-2012}+1}+...+\frac{1}{2^0+1}+...+\frac{1}{2^{2012}+1}+\frac{1}{2^{2013}+1}\)
\(S=\frac{2^{2013}}{2^{2013}+1}+\frac{2^{2012}}{2^{2012}+1}+....+\frac{1}{2^{2012}+1}+\frac{1}{2^{2013}+1}\)
=(\(\frac{2^{2013}}{2^{2013}+1}+\frac{1}{2^{2013}+1}\))+(\(\frac{2^{2012}}{2^{2012}+1}+\frac{1}{2^{2012}+1}\))+...+ \(\frac{1}{2}\) ( có 2013 dấu ngoặc )
= 1+ 1+.....+ \(\frac{1}{2}\) = 2013\(\frac{1}{2}\)
tính tổng S=\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{2012^2}+\frac{1}{2013^2}}\)
giúp mình với mơn nha
br258 / 6.18 dư 3 , khi chia 12 ,3 , 21 dư 6 vậy br = 26 .1 / 655
giúp mình với mình ttick cho]
tính tổng S = 2013 + 2013/ 1+2 2013/ 1+2+3 + ..... + 2013 / 1+2+3+...+2012
Cho A= \(\frac{4+\frac{4}{2012}-\frac{4}{2013}+\frac{4}{2014}-\frac{4}{2015}}{\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}+7}\)
Và B= \(\frac{1+2+2^2+...+2^{2013}}{2^{2015}-2}\)
Tính A - B
p/S: LM ƠN GIÚP TỚ VS :
\(TA-CO':\)
\(A=\frac{4+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}{7+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}\)
\(A=\frac{4\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}{7\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}\)
\(A=\frac{4}{7}\)
\(B=\frac{1+2+...+2^{2013}}{2^{2015}-2}\)
ĐẶT \(C=1+2+...+2^{2013}\)
\(\Rightarrow2C=2+2^2+...+2^{2014}\)
\(\Rightarrow2C-C=\left(2+2^2+...+2^{2014}\right)-\left(1+2+...+2^{2013}\right)\)
\(\Rightarrow C=2^{2014}-2\)
\(\Rightarrow B=\frac{2^{2014}-1}{2^{2015}-2}\)
\(B=\frac{2^{2014}-1}{2\left(2^{2014}-1\right)}\)
\(B=\frac{1}{2}\)
\(\Rightarrow A-B=\frac{3}{7}-\frac{1}{2}=\frac{6}{14}-\frac{7}{14}\)
\(A-B=\frac{6-7}{14}=\frac{-1}{14}\)
VẬY, \(A-B=\frac{-1}{14}\)
Rút gọn phân số : \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
Giúp tớ với các cậu ơi !!!!!!!!!!!!
\(A=\frac{T}{M}\)
\(M=\frac{2012}{2}+1+\frac{2011}{3}+1+.....+\frac{1}{2013}+1=\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}\)
\(=2014\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)=2014.T\)
\(A=\frac{T}{M}=\frac{T}{2014.T}=\frac{1}{2014}\)
Rút gọn phân số : \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
Giúp tớ với các cậu ơi !!!!!!!!!!!!
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2014}{2}+\frac{2014}{3}+\frac{2014}{4}+...+\frac{2014}{2013}}\)=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}=\frac{1}{2014}\)
bn xem kết quả có đúng ko?
bấm máy tính ra kết quả ai trả làm được phải làm cách giải mới khó
tính tổng
S = \(\frac{1}{2^{-2013}+1}\) + \(\frac{1}{2^{-2012}+1}\) +....+ \(\frac{1}{2^0+1}\)+...+ \(\frac{1}{2^{2012}+1}\) +\(\frac{1}{2^{2013}+1}\)
Xét với n là số nguyên thì : \(\frac{1}{2^{-n}+1}+\frac{1}{2^n+1}=\frac{1}{\frac{1}{2^n}+1}+\frac{1}{2^n+1}=\frac{2^n}{2^n+1}+\frac{1}{2^n+1}=\frac{2^n+1}{2^n+1}=1\)
Vậy ta nhóm hợp lí như sau :
\(S=\left(\frac{1}{2^{-2013}+1}+\frac{1}{2^{2013}+1}\right)+\left(\frac{1}{2^{-2012}+1}+\frac{1}{2^{2012}+1}\right)+...+\left(\frac{1}{2^{-1}+1}+\frac{1}{2^1+1}\right)+\frac{1}{2^0+1}\)
\(=1+1+...+1+\frac{1}{2}\) (2013 số hạng 1)
\(=2013+\frac{1}{2}\)
\(S=\sqrt{1+2010^2+\frac{2010^2}{2011^2}}+\frac{2010}{2011}+\sqrt{1+2011^2+\frac{2011^2}{2012^2}}+\frac{2011}{2012}+\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
Tính \(A=2013+\frac{2013}{1+2}+\frac{2013}{1+2+3}+\frac{2013}{1+2+3+4}+...+\frac{2013}{1+2+3+...+2012}\)
Ta có : 1 + 2 + 3 + ... + n = \(\frac{\left(n+1\right)n}{2}\)
Vậy nên : \(A=2013+\frac{2013}{\frac{3.2}{2}}+\frac{2013}{\frac{4.3}{2}}+...+\frac{2013}{\frac{2013.2012}{2}}\)
\(A=2013+\frac{4026}{2.3}+\frac{4016}{3.4}+...+\frac{4026}{2012.2013}\)
\(A=4026\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\right)\)
\(A=4026\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)
\(A=4026\left(1-\frac{1}{2013}\right)=4026.\frac{2012}{2013}=4024.\)