cho A=102011+102012+102013+...+102018 +16.Chứng minh rằng A chia hết cho 48
Cho A= 102012 + 102011+ 102010 +102009 Chứng minh A không phải là số chính phương
cho A = 102012 + 102011 + 102010 + 102009 + 8
Sửa đề: Chứng mình chia hết 24
Tách: 24=8.3
⇒3 (1)
8 (Vì: 0088) (2)
Từ (1) và (2) ⇒A24 Vì: (3,8)
⇒đpcm
tham khảo
https://olm.vn/hoi-dap/detail/48844794829.html
A=10 2012+10 2011+10 2010+10 2009+8
= 100..0 + 100...0 + 100...0 + 100...0 +8
(2012 số 0) (2011 số 0) (2010 số 0) (2009 số 0)
= (1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+8
=12
A=102012+1/102011+1 và B=102011+1/102010+1
\(\dfrac{1}{10}A=\dfrac{10^{2012}+1}{10^{2012}+10}=1-\dfrac{9}{10^{2012}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{2011}+1}{10^{2011}+10}=1-\dfrac{9}{10^{2011}+10}\)
10^2012+10>10^2011+10
=>9/10^2012+10<9/10^2011+10
=>-9/10^2012+10>-9/10^2011+10
=>A>B
Cho A= 102012 + 102011+ 102010 +102009 Chứng minh A không phải là số chính phương
Ai trả lời được cho tớ bít nhé iu mọi người nhìu!
Chả lời đúng tui t i c k (Ghép các chữ ấy lại)
Chứng Tỏ 102013-2014 chia hết cho 3
\(10\equiv1\left(mod3\right)\Leftrightarrow10^{2013}\equiv1\left(mod3\right)\\ 2014\equiv1\left(mod3\right)\\ \Leftrightarrow10^{2013}-2014\equiv1-1=0\left(mod3\right)\\ \Leftrightarrow10^{2013}-2014⋮3\)
cho n =dcba
chứng minh rằng
a, n chia hết cho 4 <=> a+2b chia het cho 4
b, n chia hết cho 8 <=> a+2b+4c chia hết cho 48
n chia hết cho 16 <=> a+2b+ 4c +8d chia hết cho 16 và b là số chẵn
b, dcba = 1000d +100c +10b +a=(1000d+96c+8b)+(a+2b+4c)
mà 100d +96c +8b chia hết cho 8
suy ra a+2b+4c chia hết cho 8(đpcm)
Ta có : \(n=\overline{dcba}=1000d+100c+10b+a\)
\(=\left(1000d+100c+8b\right)+\left(2b+a\right)\)
\(=4\left(250d+25c+2b\right)+\left(2b+a\right)\)
Vì n chia hết cho 4 và 4(250d+25c+2b) chia hết cho 4 nên a+2b chia hết cho 4.
câu b) tương tự, ta có :\(n=8\left(125d+12c+b\right)+\left(a+2b+4c\right)\)
mà n chia hết cho 8 ; 8(125d+12c+b) chia hết cho 8 => a+2b+4c chia hết cho 8.
câu c) : \(n=16\left(62d+6c+\frac{b}{2}\right)+\left(a+2b+4c+8d\right)\)
vì b chẵn => 16(62d+6c+b/2) chia hết cho 16 mà n chia hết cho 16; => a+2b+4c+8d chia hết cho 16.
1)Chứng minh rằng Tổng của 5 số tự nhiên liên tiếp luôn chia hết cho 5 còn tổng 6 số liên tiếp không chia hết cho 6
2)Cho (16.a+17.b)chia hết cho11 Chứng minh rằng (17.a+16.b)chia hết cho11
cho A = 10^2012 + 10^2103 + 10^2014 + 10^2015 + 16 chứng minh A chia hết cho 48
cho A = 10^2012 + 10^2103 + 10^2014 + 10^2015 + 16 chứng minh A chia hết cho 48