Những câu hỏi liên quan
KS
Xem chi tiết
DH
12 tháng 2 2022 lúc 16:38

Với số nguyên tố \(p\)bất kì, xét dãy số: \(2,22,...,222...22\)(\(p+1\)chữ số \(2\)).

Dãy số đó có \(p+1\)số hạng, do đó theo nguyên lí Dirichlet có ít nhất hai số trong dãy số có cùng số dư khi chia cho \(p\).

Giả sử đó là số \(a=22...22\)(\(k\)chữ số \(2\)) và \(b=222...22\)(\(l\)chữ số \(2\)) với \(l>k\ge1\).

Khi đó số \(b-a=22...200...0\)sẽ chia hết cho \(p\).

Ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
SM
Xem chi tiết
TN
Xem chi tiết
NM
Xem chi tiết
AN
6 tháng 9 2017 lúc 10:19

Ta biết rằng số nguyên tố lớn hơn 3 thì có 1 trong 2 dạng sau: \(6k+1;6k-1\)

Xét số nguyên tố có dạng: \(6k+1\)

Nếu k chẵn thì \(6k+1\)chia cho 12 dư 1.

Nếu k lẻ thì \(6k+1\)chia cho 12 dư 7.

Xét số nguyên tố dạng \(6k-1\)

Nếu k chẵn thì \(6k-1\)chia cho 12 dư 11.

Nếu k lẻ thì \(6k-1\)chia cho 12 dư 5.

\(\Rightarrow\)Số nguyên tố khi chia cho 12 thì có các số dư như sau: \(1;2;3;5;7;11\)

Từ đây ta thấy rằng trong 7 số nguyên tố bất kỳ sẽ có ít nhất 2 số có cùng số dư khi chi cho 12. Nên hiệu hai số đó sẽ chia hết cho 12.

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
MH
8 tháng 11 2020 lúc 11:17

giải đi, mình cũng đang cần

Bình luận (0)
 Khách vãng lai đã xóa
NQ
Xem chi tiết
NM
12 tháng 3 2021 lúc 9:15

lấy 2010 số được tạo ởi toàn chữ số 2

2; 22; 222; ......; 222...22 (2010 chữ số 2)

lần lượt chia các số trên cho 2010 thì ta sẽ được nhiều nhất 2010 phép chia có dư và các số dư nằm trong khoảng từ 1 đến 2009

Theo nguyên lý dirichlet sẽ có ít nhất hai số khi chia cho 2010 sẽ có cùng số dư

Giả sử hai số đó là A có m chữ số 2 và B có n chữ số 2 (giả sử m>n)

=> A-B=C chia hết cho 2010 trong đó C gồm m-n chữ số 2 và n chữ số 0 (dpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
DV
28 tháng 6 2016 lúc 20:09

undefined

Bình luận (1)
LD
28 tháng 6 2016 lúc 22:26

b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet) 

Bình luận (0)