Chứng minh rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6.
Bài toán vui: - Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3 - Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
Bài toán vui:
- Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
- Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
Chứng minh rằng: Tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
n(n+1)(n+2)
Với n=2k
2k(2k+1)(2k+2) chia hết 2
Với n=2k+1
(2k+1)(2k+2)(2k+3)=(2k+1).2(k+1)(2k+3) chia hết 2
=> n(n+1)(n+2) chia hết 2 (1)
Với n=3k
3k(3k+1)(3k+2) chia hết 3
Với n=3k+1
(3k+1)(3k+2).3(k+1) chia hết cho 3
Với n=3k+2
(3k+2)(3k+3)(3k+4) chia hết 3
=> n(n+1)(n+2) chia hết cho 3 (2)
(1);(2)=> n(n+1)(n+2) chia hết 6
TL:
Gọi 3 số tự nhiên liên tiếp là a;a+1 và a+2
Tích 3 số đó là: a(a+1)(a+2)= a+a+a+1+2
= 3a+ 3
Vì 3a chia hết cho3; 3 chia hết cho 3 nên 3a+3 chia hết cho 3
=> a(a+1)(a+2) chia hết cho 3
- Nếu a chẵn thì a(a+1)(a+2) chia hết cho 2
-Nếu a lẻ thì a+1 chia hết cho 2=> a(a+1)(a+2)
Vậy a(a+1)(a+2) chia hết cho 2
Mặt khác (2,3)=1 nên a(a+1)(a+2) chia hết cho 6
HT!~!
Chứng minh rằng:
a) Tích của ba số tự nhiên liên tiếp luôn chia hết cho 3.
b) Tích của bốn số tự nhiên liên tiếp luôn chia hết cho 4
chứng tỏ rằng :
a) tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b) tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
c) tích của hai số tự nhiên liên tiếp thì chia hết cho 2
d) tích của ba số tự nhiên liên tiếp luôn chia hết cho 3
cứu mình
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a: Gọi ba số liên tiếp là a;a+1;a+2
a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
b: Gọi 4 số liên tiếp là a;a+1;a+2;a+3
a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2 ko chia hết cho 4
c: Hai số liên tiếp thì luôn có 1 số chẵn, 1 số lẻ
=>Hai số liên tiếp khi nhân với nhau sẽ chia hết cho 2
d: Ba số liên tiếp thì chắc chắn sẽ có 1 số chia hết cho 3
=>Ba số liên tiếp khi nhân với nhau sẽ chia hết cho 3
chứng minh rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 3
Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2.
Ta có:(a+a+1+a+2)=3a+3
Mà 3a chia hết cho 3
3 chia hết cho 3
Suy ra 3a+3 chia hết cho 3
vì 3 số có trung bình cộng chia được cho 3 nên phải chia được cho 3
1 cho abc-deg chia hết cjo 7
a, chứng minh rằng abcdeg chia hết 7
2 a, chứng minh rằng ; Tích của ba số tự nhiên liên tiếp thì chia hết cho 3 và cho 2
b, chứng minh ; Tích của 4 số tự nhiên liên tiếp luôn chia hết cho 4
c, chứng minh (n+3).(n+4).(2n+7) chia hết cho 3
a) chứng minh rằng trong ba số tự nhiên liên tiếp chắc chắc chắn có một số chia hết cho 2 và một số chia hết cho 36
b) chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho
1: Chứng minh rằng: tích 2 số tự nhiên liên tiếp chia hết cho 2
2: Chứng minh rằng: tích của 3 số tự nhiên liên tiếp chia hết cho 6
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
1.trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2=> tích của 2 số tự nhiên liên tiếp luôn chia hết cho 2
2.trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 2 và 1 số chia hết cho 3 mà (2,3)=1=>tích của 3 số tự nhiên liên tiếp luôn chia hết cho 2.3=6