Những câu hỏi liên quan
H24
Xem chi tiết
BT
9 tháng 2 2017 lúc 8:25

ko biết 

Bình luận (0)
NT
9 tháng 2 2017 lúc 9:07

Ta Có : 

p là số nguyên tố ko chia hết cho 3 

Nên 8p cũng ko chia hết cho 3

mà 8p-1 , 8p , 8p+1 là 3 số liên tiếp

mà 8p-1 và 8p ko chia hết cho 3 

Nên 8p+1 chia hết cho 3 

Nên 8p+1 là hợp số 

KL : 8p+1 là hợp số

Bình luận (0)
DM
Xem chi tiết
DN
11 tháng 6 2016 lúc 9:04

p = 2 thì 8p - 1 = 15 => loại

p = 3 thì 8p - 1 = 23 ; 8p+1=25 là hợp số => chọn

p > 3 thì p không chia hết cho 3

p chia 3 dư 2 thì 8p - 1 chia hết cho 3 nên loại

=> p chia 3 dư 1 => 8p + 1 chia hết cho 3 ; là hợp số

Bình luận (0)
HH
Xem chi tiết
DH
15 tháng 12 2015 lúc 22:15

* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa 

* Xét: p # 3 
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3 
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3 

Vậy: 
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3 
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3 
=> 8p+1 là hợp số 
Tick mình nha 

Bình luận (0)
PB
Xem chi tiết
PB
28 tháng 1 2016 lúc 9:08

ai tik mk, mk tik lại

Bình luận (0)
NH
Xem chi tiết
SG
Xem chi tiết
HT
25 tháng 9 2021 lúc 20:09

A

Bình luận (0)
NA
Xem chi tiết
DA
24 tháng 11 2016 lúc 21:29

p=2 thì 8p-1 = 15 => loại

p=3 thì 8p-1=23 ; 8p+1=25 là hợp số => chọn

p>3 thì p không chia hết cho 3

p chia 3 dư 2 thì 8p-1 chia hết cho 3 nên loại

=> p chia 3 dư 1 => 8p+1 chia hết cho 3 ; là hợp số

Bình luận (0)
LV
4 tháng 11 2021 lúc 22:24

Nếu    \(p=2\Rightarrow8p-1=15\)   là hợp số \(\left(ktm\right)\)

Nếu    \(p=3\Rightarrow8p-1=23\)là số nguyên tố và \(8p+1=25\)là hợp số \(\left(tm\right)\)

Nếu   \(p>3\Rightarrow p=3k+1;p=3k+2\left(k\inℕ\right)\)

Với \(p=3k+1\left(k\inℕ\right)\Rightarrow8p+1=8\left(3k+1+1\right)=24k+9=3\left(8k+3\right)>3\)

và \(⋮3\)nên \(8p+1\)là hợp số

Với \(p=3k+2\left(k\inℕ\right)\Rightarrow8p-1=8\left(3k+2\right)-1=24k+15=3\left(8k+5\right)>3\)và \(⋮3\)nên \(8p-1\)là hợp số. ( Vô lí )

Vậy \(8p+1\)là hợp số khi \(8p-1\)và \(p\)là các số nguyên tố

Bình luận (0)
 Khách vãng lai đã xóa
VB
25 tháng 11 2022 lúc 20:45

Vì p là SNT >3 nên p:3 dư 1 hoặc 2

Nếu p;3 dư 1 thì p có dạng 3k+1 (kϵ Nsao)

=)8p+1 có dạng 8.(3k+1)=24k+8+1=24k+9⋮3

Mà 8p+1 là Hợp số

+) p:3 dư 2

=) 8p-1 có dạng 8 (3k+1)=24kk+16-1=24k+15⋮3

Vậy bài toán đc chứng minh

Bình luận (0)
TN
Xem chi tiết
H24
2 tháng 4 2018 lúc 22:42

  zdvdz

Bình luận (0)
PK
Xem chi tiết
EM
3 tháng 5 2016 lúc 20:42

* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa mãn

* Xét: p # 3 
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3 
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3 

Vậy: 
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3 
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3 
=> 8p+1 là hợp số 

Bình luận (0)