từ tỉ lệ thức a/b=c/d(a khác c,b khác d ) hãy rút ra tỉ lệ thức a+c/a-c=b+d/b-d
Từ tỉ lệ thức a/b=c/d(a,b,c,d khác 0; a khác +-b; c khác +-d) hãy suy ra tỉ lệ thức sau
a/a+b=c/c+d
ta có :\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\)
áp dụng t/c của dãy t/s = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}->\frac{a}{c}=\frac{a+c}{b+d}=\frac{a}{a+b}=\frac{c}{c+d}\left(dpcm\right)\)
HÃY CHỨNG MINH RẰNG TỪ TỈ LỆ THỨC a/b = c/d ( a-b khác 0 , c-d khác 0 ) ta có thể suy ra tỉ lệ thức a + b / a - c = c + d / c - d
Ta có a/b = c/d suy ra a/b = b/d
Áp dụng tính chất dãy tính chất tỉ số = nhau
a/c = b/d = a + b / c + d = a-b/c-d suy ra a+b / c-d = c+d/c-d.
**** MÌNH NHA BẠN.
Cho a,b,c,d khác 0.Từ tỉ lệ thức a/b=c/d hãy suy ra tỉ lệ thức a-b/a=c-d/c
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dya4 tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\left(đpcm\right)\)
ab =cd
⇒ac =bd
Áp dụng tính chất dãy tỉ số bằng nhau:
ac =bd =a−bc−d
⇒ac =a−bc−d ⇒a−ba =c−dc (đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=cb\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)
=> đpcm
cho a,b,c,d khác 0 , từ tỉ lệ thức a/b = c/d , hãy suy ra tỉ lệ thức a-b / a = c-d / c
d) a/b = c/d => ad = bc => b/a = d/c
=>b/a - 1 = d/c - 1
b/a - a/a = d/c - c/c
(b - a)/b = (d - c)/c
Cho a,b,c,d khác 0. Từ tỉ lệ thức a/b=c/d hãy suy ra tỉ lệ thức a-b/a=c-d/c
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=>\(\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\)
Vậy ta có đpcm
có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a}{c}=\frac{a-b}{c-d}=>\frac{c-d}{c}=\frac{a-b}{a}\)
a/b =c/d ⇒a/c =b/d
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a/c =b/d =a−b/c−d
=>a/c =a−b/c−d ⇒a−b/a =c−d/c
Vậy ta có đpcm
Đề bài : từ tỉ lệ thức a/b =c/d hãy suy ra các tỉ lệ thức sau:
a, a+b/b=c+d/d
b, a/a+b =c/c+d (với a+b khác 0, c+d khác 0)
Từ tỉ lệ thức a/b=c/d (a,b,c,d khác 0;a khác \(\pm b\);c\(\ne\)\(\pm d\)) hãy suy ra các tỉ lệ thức sau:
a,\(\dfrac{a+b}{b}\) = \(\dfrac{c+d}{d}\)
b,\(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)
c,\(\dfrac{a+b}{a}\) = \(\dfrac{c+d}{c}\)
d,\(\dfrac{a-b}{a}\) =\(\dfrac{c-d}{c}\)
e,\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
f,\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
a) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\) và \(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-b}{b}=\dfrac{b\left(k-1\right)}{b}=k-1\\\dfrac{c-d}{d}=\dfrac{d\left(k-1\right)}{d}=k-1\end{matrix}\right.\)\(\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
c) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
d) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
e: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
hay \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
từ tỉ lệ thức a/b = c/d (a,b,c,d khác 0 , a khác b , -b , c khác đ,-đ) hãy suy ra các tỉ lệ thức sau
\(\frac{a-b}{a}=\frac{c-d}{c}\)
câu hỏi tương tự nha bn
tick mk nha
Từ tỉ lệ thức a/b=c/d hãy rút ra tỉ lệ thức a+c/a-c=b+d/b-d
Theo tính chất của dãy tỉ số bằng nhau, ta có: a/b = c/d = ( a + c )/( b + d ) = ( a - c )/( b - d ) => ( a + c )/( a - c ) = ( b + d )/( b - d )