x2+1/x2 >=2 với mọi x khác 0
cho hàm số f(x) xác định với mọi x khác 0 thỏa mãn
a) f(1)=1
b)f(1/x)=1/x^2.f(x)
c) f(x1+x2)=f(x1)+f(x2) với mọi x1 , x2 khác 0 , x1+x2 khác 0 . CTR f(5/7)=5/7
Theo c) \(f\left(\frac{5}{7}\right)=f\left(\frac{2}{7}+\frac{3}{7}\right)=f\left(\frac{2}{7}\right)+f\left(\frac{3}{7}\right)\)
\(f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}+\frac{1}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{1}{7}\right)=2.f\left(\frac{1}{7}\right)\)
\(f\left(\frac{3}{7}\right)=f\left(\frac{1}{7}+\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+2f\left(\frac{1}{7}\right)=3.f\left(\frac{1}{7}\right)\)
\(\implies\)\(f\left(\frac{5}{7}\right)=5.f\left(\frac{1}{7}\right)\) (1)
Theo b) \(f\left(\frac{1}{7}\right)=\frac{1}{7^2}.f\left(7\right)\) (2)
Theo c) \(f\left(7\right)=f\left(3+4\right)=f\left(3\right)+f\left(4\right)\)
\(=2.f\left(3\right)+f\left(1\right)\)
\(=6.f\left(1\right)+f\left(1\right)\)
\(=7.f\left(1\right)\)
Theo a)\(f\left(1\right)=1\)\(\implies\)\(f\left(7\right)=7\) (3)
Từ (1);(2);(3)
\(\implies\) \(f\left(\frac{5}{7}\right)=\frac{5}{7}\)
cho f(x) mà với mọi x khác 0 thì: f(1)=1;f(1/x)= 1/x2 .f(x) ;f(x1+ x2)=f(x1)+f(x2) với mọi x1+x2k khác 0 và x1;x2 khác 0.CMR: f(5/7)= 5/7
Cho f(x) xác định với moi x khác 0 thỏa mãn
f(1)=1
f(1/x)=1/x^2
f(x1+x2)=f(x1)+f(x2) với mọi x1,x2 khác 0 vá x1+x2 khác 0
tính f(5/7)
1) đa thức f(x)=x^6-x^3+x^2-x+1 có hay ko có nghiệm trên tập hợp số thưc r
2)cho hàm số f(x) xác định với mọi x khác thỏa mãn : f(1)=1 và f(x1 +x2)=f(x1)+f (x2)với mọi x1,x2 jkhacs 0 , x1 + x2 cũng khác 0 và f (1/x)=1/x^2 . f(x) . CMR : f)5/7)=5/7
Cho hàm số y=f(x) xác định với mọi x khác 0. Biết f(1)=1; f(1) : x = 1/x^2 * f(x). Biết f(x1+x2) = f(x1) + f(x2) với x(1) và x(2) khác 0. Tính f(2014/2015)
1, x2-x+1/4=0
2, x2-10x=-25
mọi ng giúp e với ạ. cảm ơn mọi ng
1, \(x^2\) - \(x\) + \(\dfrac{1}{4}\) = 0
\(x^2\) - 2.\(x\).\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) = 0
(\(x\) - \(\dfrac{1}{2}\))2 = 0
\(x\) - \(\dfrac{1}{2}\) =0
\(x\) = \(\dfrac{1}{2}\)
2, \(x^2\) - 10\(x\) = -25
\(x^2\) - 10\(x\) + 25 = 0
(\(x\) - 5)2 = 0
\(x\) - 5 =0
\(x\) = 5
Chứng minh A = x2 - 3xy + 6y2 luôn dương với mọi x, y khác 0.
\(x^2-3xy+6y^2\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}y+\dfrac{9}{4}y^2+\dfrac{15}{4}y^2\)
\(=\left(x-\dfrac{3}{2}y\right)^2+\dfrac{15}{4}y^2>0\forall x,y\)
cho y=f(x) xác định với mọi x khác 0 thỏa mãn :
a) f(1)=1
b) f(1/x)=(1/x^2)*f(x)
c) f(x1+x2)=f(x1)+f(x2)
Tính f(3/2020)
giúp minh với minh cần gấp thanks
Từ giả thiết \(f\left(x_1+x_2\right)=f\left(x_1+x_2\right)\) ta có các biến đổi sau:
\(f\left(2020\right)=f\left(1024\right)+f\left(996\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(484\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(228\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(100\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)
\(+f\left(36\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)
\(+f\left(32\right)+f\left(4\right)\)
Dễ tính \(f\left(1024\right)=\)\(2.f\left(512\right)=4.f\left(256\right)=8.f\left(128\right)=16.f\left(64\right)\)
\(=32.f\left(32\right)=64.f\left(16\right)=128.f\left(8\right)=256.f\left(4\right)=512.f\left(2\right)\)
\(=1024.f\left(1\right)=1024\)
Tương tự ta có \(f\left(512\right)=512;f\left(256\right)=256;f\left(128\right)=128;f\left(64\right)=64;\)
\(f\left(32\right)=32;f\left(4\right)=4\)
\(\Rightarrow f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)
\(+f\left(32\right)+f\left(4\right)=2020\)
hay \(f\left(2020\right)=2020\)
Ta có: \(f\left(\frac{1}{x}\right)=\frac{1}{x^2}.f\left(x\right)\)
\(\Rightarrow f\left(\frac{1}{2020}\right)=\frac{1}{2020^2}.2020=\frac{1}{2020}\)
\(\Rightarrow f\left(\frac{3}{2020}\right)=f\left(\frac{2}{2020}\right)+f\left(\frac{1}{2020}\right)\)
\(=f\left(\frac{1}{2020}\right)+f\left(\frac{1}{2020}\right)+f\left(\frac{1}{2020}\right)\)
\(=\frac{1}{2020}.3=\frac{3}{2020}\)
Vậy \(f\left(\frac{3}{2020}\right)=\frac{3}{2020}\)
Chứng minh:
a. x2 + xy + y2 + 1 > 0 với mọi x, y
b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z
⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0
x^2+4y^2+z^2-2x-6z+8y+15
=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9
=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1
=(x-1)^2+4(y+1)^2+(z-3^)2+1
Ta thấy:(x−1)^2≥0
4(y+1)^2≥0
(z−3)^ 2≥0
{(x−1)^24(y+1)^2(z−3)^2≥0
⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0
⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0
\(x^2+xy+y^2+1.=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2+1.\\ =\left(x+\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2+1>0\forall x;y\in R.\\ \Rightarrow x^2+xy+y^2+10\forall x;y\in R.\)
Bài 6: Chứng minh rằng:
a) x2 – x + 1 > 0 với mọi số thực x
b) -x2+2x -4 < 0 với mọi số thực x
Bài 7: Tính nhanh giá trị biểu thức:
tại x = 18; y = 4
b) (2x + 1)2 + (2x - 1)2 - 2(1 + 2x)(1 - 2x) tại x = 100
a) x2 – x + 1
=(x2 – x + 1/4 )+3/4
=(x-1/2)2+3/4
ta có (x-1/2)2>=0
(x-1/2)2+3/4>=+3/4>0
vậy (x-1/2)2+3/4>0 với mọi số thực x
b) -x2+2x -4
= -x2+2x -1-3
=-(x2-2x +1)-3
=-(x-2)2-3
ta có (x-2)2>=0
=>-(x-2)2=<0
=>-(x-2)2-3=<-3<0
vậy -(x-2)2-3<0 với mọi số thực x