Những câu hỏi liên quan
H24
Xem chi tiết
IN
17 tháng 2 2020 lúc 0:40

Theo c) \(f\left(\frac{5}{7}\right)=f\left(\frac{2}{7}+\frac{3}{7}\right)=f\left(\frac{2}{7}\right)+f\left(\frac{3}{7}\right)\)

      \(f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}+\frac{1}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{1}{7}\right)=2.f\left(\frac{1}{7}\right)\) 

  \(f\left(\frac{3}{7}\right)=f\left(\frac{1}{7}+\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+2f\left(\frac{1}{7}\right)=3.f\left(\frac{1}{7}\right)\)

       \(\implies\)\(f\left(\frac{5}{7}\right)=5.f\left(\frac{1}{7}\right)\)          (1)

 Theo b) \(f\left(\frac{1}{7}\right)=\frac{1}{7^2}.f\left(7\right)\)          (2)

Theo c) \(f\left(7\right)=f\left(3+4\right)=f\left(3\right)+f\left(4\right)\)

                                                 \(=2.f\left(3\right)+f\left(1\right)\) 

                                                 \(=6.f\left(1\right)+f\left(1\right)\) 

                                                 \(=7.f\left(1\right)\)

Theo a)\(f\left(1\right)=1\)\(\implies\)\(f\left(7\right)=7\)      (3)

    Từ (1);(2);(3)

       \(\implies\)       \(f\left(\frac{5}{7}\right)=\frac{5}{7}\)

Bình luận (0)
 Khách vãng lai đã xóa
TK
7 tháng 4 2020 lúc 20:07

︵✰He❤lloღ

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
NQ
Xem chi tiết
LM
Xem chi tiết
DN
Xem chi tiết
PT
Xem chi tiết
NH
16 tháng 8 2023 lúc 21:31

1, \(x^2\) - \(x\) + \(\dfrac{1}{4}\) = 0

   \(x^2\) - 2.\(x\).\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) = 0

   (\(x\) - \(\dfrac{1}{2}\))2 = 0

    \(x\)  - \(\dfrac{1}{2}\) =0

     \(x\)        = \(\dfrac{1}{2}\)

Bình luận (0)
NH
16 tháng 8 2023 lúc 21:32

2,    \(x^2\) - 10\(x\) = -25

     \(x^2\) - 10\(x\) + 25 = 0

      (\(x\) - 5)2 = 0

       \(x\) - 5 =0

       \(x\)       = 5

    

Bình luận (0)
H24
Xem chi tiết
NT
2 tháng 9 2021 lúc 20:17

\(x^2-3xy+6y^2\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}y+\dfrac{9}{4}y^2+\dfrac{15}{4}y^2\)

\(=\left(x-\dfrac{3}{2}y\right)^2+\dfrac{15}{4}y^2>0\forall x,y\)

Bình luận (0)
AD
Xem chi tiết
KN
4 tháng 3 2020 lúc 7:19

Từ giả thiết \(f\left(x_1+x_2\right)=f\left(x_1+x_2\right)\) ta có các biến đổi sau:

\(f\left(2020\right)=f\left(1024\right)+f\left(996\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(484\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(228\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(100\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)

\(+f\left(36\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)

\(+f\left(32\right)+f\left(4\right)\)

Dễ tính \(f\left(1024\right)=\)\(2.f\left(512\right)=4.f\left(256\right)=8.f\left(128\right)=16.f\left(64\right)\)

\(=32.f\left(32\right)=64.f\left(16\right)=128.f\left(8\right)=256.f\left(4\right)=512.f\left(2\right)\)

\(=1024.f\left(1\right)=1024\)

Tương tự ta có \(f\left(512\right)=512;f\left(256\right)=256;f\left(128\right)=128;f\left(64\right)=64;\)

\(f\left(32\right)=32;f\left(4\right)=4\)

\(\Rightarrow f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)

\(+f\left(32\right)+f\left(4\right)=2020\)

hay \(f\left(2020\right)=2020\)

Ta có: \(f\left(\frac{1}{x}\right)=\frac{1}{x^2}.f\left(x\right)\)

\(\Rightarrow f\left(\frac{1}{2020}\right)=\frac{1}{2020^2}.2020=\frac{1}{2020}\)

\(\Rightarrow f\left(\frac{3}{2020}\right)=f\left(\frac{2}{2020}\right)+f\left(\frac{1}{2020}\right)\)

\(=f\left(\frac{1}{2020}\right)+f\left(\frac{1}{2020}\right)+f\left(\frac{1}{2020}\right)\)

\(=\frac{1}{2020}.3=\frac{3}{2020}\)

Vậy \(f\left(\frac{3}{2020}\right)=\frac{3}{2020}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LT
1 tháng 4 2022 lúc 9:27

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

x^2+4y^2+z^2-2x-6z+8y+15

=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9

=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1

=(x-1)^2+4(y+1)^2+(z-3^)2+1

Ta thấy:(x−1)^2≥0

              4(y+1)^2≥0

             (z−3)^ 2≥0

{(x−1)^24(y+1)^2(z−3)^2≥0

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0

Bình luận (1)
TT
1 tháng 4 2022 lúc 9:29

\(x^2+xy+y^2+1.=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2+1.\\ =\left(x+\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2+1>0\forall x;y\in R.\\ \Rightarrow x^2+xy+y^2+10\forall x;y\in R.\)

Bình luận (0)
LT
1 tháng 4 2022 lúc 9:30

Kkk

Bình luận (9)
DL
Xem chi tiết
LT
22 tháng 10 2021 lúc 20:24

a) x2 – x + 1 

=(x2 – x + 1/4 )+3/4

=(x-1/2)2+3/4

ta có (x-1/2)2>=0

(x-1/2)2​+3/4>=​+3/4>0

vậy (x-1/2)2​+3/4>0 với mọi số thực x

b)  -x2+2x -4

= -x2+2x -1-3

=-(x2-2x +1)-3

=-(x-2)2​-3

ta có (x-2)2>=0

=>-(x-2)2=<0

=>-(x-2)2​-3=<​-3<0

vậy -(x-2)2​-3<0 với mọi số thực x

 

 

Bình luận (0)