Cho M=1/1.2.3+1/2.3.4+1/3.4.5+...+1/100.101.102. so sánh M với 1
Giúp mình bài này với mina
Cho M = 1 phần 1.2.3 + 1 phần 2.3.4 + 1 phần 3.4.5+…+ 1 phần 100.101.102
Hãy so sánh M với 1.
Tính ra M to lắm bạn ơi so sánh với 1 đời nào
\(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{100.101.102}\)
\(\Rightarrow2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{100.101.102}\)
\(\Rightarrow2M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{100.101}-\frac{1}{101.102}\)
\(\Rightarrow2M=\frac{1}{1.2}-\frac{1}{101.102}\)
\(\Rightarrow M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{101.102}\right)=1-\frac{1}{202.102}< 1\)
Vậy M < 1
Anh Kiệt ơi \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{101.102}\right)=\frac{1}{4}-\frac{1}{202.102}\)chứ ạ ???
\(ChoM=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{100.101.102}\)
So sánh M với 1 .
Ai nhanh mk cho 9 tick ( hôm nay 3 , mai ba , mốt 3 )
#Thiên_Hy
\(M=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{100.101.102}\right)\)
\(M=\frac{1}{2}.\left(1-\frac{1}{102}\right)\)
\(M=\frac{101}{204}< 1\left(đpcm\right)\)
Ta có: M=11.2.3 +12.3.4 +13.4.5 +...+1100.101.102
M=2.(11.2.3 +12.3.4 +13.4.5 +...+1100.101.102 ).12
M=(21.2.3 +22.3.4 +23.4.5 +...+2100.101.102 ).12
M=(11.2 -12.3 +12.3 -13.4 +13.4 -14.5 +...+1100.101 −1101.102 ).12
M=( 11.2 −1101.102 ).12
Mà 1
Đúng 0
Bình luận (0)
M=1/1x2x3 =1/2x3x4 +1/3x4x5 +..........+1/100x101x102
M=3-1/1x2x3 +4-2/2x3x4+5-3/3x4x5 + ......... +102-100/100x101x102
M=3/1x2x3 -1/1x2x3 +4/2x3x4 -2/2x3x4 +........... + 102/100x101x102 -100/100x101x102
M=1/1x2 -1/2x3 +1/2x3 -1/3x4 +......... + 1/100x101 -1/101x102
M=1/1x2 -1/101x102
M=2575/5151 < 1 suy ra M<1
Vậy M<1
Cho M = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{100.101.102}\)
Hãy so sánh M và 1
Help me!
\(M=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{100\cdot101\cdot102}\\ M=\frac{1}{2}\cdot\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{100\cdot101\cdot102}\right)\\ M=\frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{100\cdot101}-\frac{1}{101\cdot102}\right)\\ M=\frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{101\cdot102}\right)\\ M=\frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{10302}\right)\\ M=\frac{1}{2}\cdot\left(\frac{5151}{10302}-\frac{1}{10302}\right)\\ M=\frac{1}{2}\cdot\frac{25}{51}\\ M=\frac{25}{102}\\ \Rightarrow M< 1\)
Vậy M < 1
Cho A= 1/1.2.3+ 1/2.3.4+1/3.4.5+...+1/2014.2015.2016. So Sánh A với 1/4.
A = 1 - 1/2 - 1/3 + 1/2 - 1/3 - 1/4 + ... + 1/2014 - 1/2015 - 1/2016
A = 1- 1/2016
A = 2015/2016
A > 1/4
cho A= 1/1.2.3+1/2.3.4+1/3.4.5+....+1/2014.2015.2016 so sánh với 1/4
A=4949/19800 và 1/4
4949/19800 < 1/4
Xong! t*** mik đê!!!
Cho A= 1/1.2.3+1/2.3.4+1/3.4.5+...+1/2014.2015.2016. So sánh với 1/4
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
\(A=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\right)\)
\(A=0,2499998...<0,25\)
\(\Rightarrow A<\frac{1}{4}\)
Cho A=1/1.2.3+1/2.3.4+1/3.4.5+...+1/2014.2015.2016 so sánh A với 1/4
Cho S = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/23.24.25
Hãy so sánh S với 0,25
S = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/23.24.25
2.S = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 2/23.24.25
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ...+ 1/23.24 - 1/24.25
= 1/1.2 - 1/24.25 = 1/2 - 1/600
=> S = (1/2 - 1/600) : 2 = 1/4 - 1/1200
Dễ thấy S < 1/4 Hay S < 0,25
1/2.(2/1.2.3+2/2.3.4+......2/23.24.25)
1/2.(1/1.2-1/2.3+1/2.3-1/3.4+……+1/23.24-1/24.25)
1/2.(1/1.2-1/24.25)
1/2.(1/2-1/600)
1/2.(300/600-1/600)
1/2.299/600
299/1200
Ta co 0.25=1/4
Nen ta so sanh 1/4 va 299/1200
Vi 300/1200>299/1200
Nen 1/4>299/1200
Ket luan 0,25>S
S=
1.2.3
1
+
2.3.4
1
+...+
(n−1).n.(n+1)
1
+...+
23.24.25
1
=
1
2
.
(
1
1.2
−
1
2.3
+
1
2.3
−
1
3.4
+
.
.
.
+
1
(
�
−
1
)
.
�
−
1
�
.
(
�
+
1
)
+
.
.
.
+
1
23.24
−
1
24.25
)
=
2
1
.(
1.2
1
−
2.3
1
+
2.3
1
−
3.4
1
+...+
(n−1).n
1
−
n.(n+1)
1
+...+
23.24
1
−
2-gameguardian .25
1
)
=
1
2
.
(
1
1.2
−
1
24.25
)
=
299
1200
=
2
1
.(
1.2
1
−
24.25
1
)=
1200
299
Tinh : M= 1.2.3+2.3.4+3.4.5+...+100.101.102./2+21+35+...+133+161+203