So sánh (a+2)(b+2) với 2a + 2b + 4 khi a,b khác dấu
Các bạn giải cho mình tham khảo nha!!!!!!
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a b c là độ dài 3 cạnh của 1 tam giác
CMR \(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4\)>0
Bạn nào giải nhanh đúng mình tick cho nha
A = 2a2b2 + 2b2c2 + 2a2c2 − a4 − b4 − c4
<=> A = 4a2c2 − ( a4+b4 + c4 − 2a2b2 + 2a2c2 − 2b2c2 )
<=> A = 4a2c2 − ( a2 − b2 + c2)2
<=> A = ( 2ac + a2 − b2 + c2 ) ( 2ac − a2 + b2 − c2 )
<=> A = [ (a+c)2 − b2 ] ( b2 − (a−c)2)
<=> A = ( a+b+c) (a+c−b) (b+a−c) (b−a+c)
Mà a, b, c là 3 cạnh của tam giác nên: Mà a, b, ca, b, c là 33 cạnh của tam giác nên:\
a+b+c>0
a+c−b>0
b+a−c>0
b−a+c>
=> (a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
A>0 (Dpcm)
cho các số a;b;c;d thỏa mãn 3a+2b-d-c=1; 2a+2b-c+2d=2; 4a+2b-3c+d=3; 8a+b-6c+d=4
Tính a+b+c+d=...
(Các bạn giải gấp giùm mình nha)
Cho phân thức A=\(\frac{4bc-a^2}{bc+2a^2}\);B=\(\frac{4ca-b^2}{ca+2b^2}\);C=\(\frac{4ab-c^2}{ab+2c^2}\)
Cmr nếu a+b+c=0 a khác b khác c thì A.B.C=1
Bạn nào giải nhanh đúng mình tick cho nha ^ ^.
Cho a,b,c là độ dài 3 cạnh tam giác, chứng minh
\(\frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}\ge1\)
MÌnh mới học bđt nên còn ít kt các bạn dùng bđt với 2 sô để giải nha!!
Đặt \(\hept{\begin{cases}-a+2b+2c=x\\2a-b+2c=y\\2a+2b-c=z\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=\frac{2y+2z-x}{9}\\b=\frac{2z+2x-y}{9}\\c=\frac{2x+2y-z}{9}\end{cases}}\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên x,y,z>0
Khi đó : \(VT=\frac{2y+2z-x}{9x}+\frac{2z+2x-y}{9y}+\frac{2x+2y-z}{9z}\)
\(=\frac{2}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{2}{9}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{2}{9}\left(\frac{z}{x}+\frac{x}{z}\right)-\frac{1}{3}\)
\(\ge\frac{2}{9}.2+\frac{2}{9}.2+\frac{2}{9}.2-\frac{1}{3}\)(BĐT Cauchy cho 2 số không âm)
\(=\frac{4}{9}.3-\frac{1}{3}=\frac{4}{3}-\frac{1}{3}=1\)
\(\frac{a}{2b+2c-a}+\frac{b}{2a+2c-b}+\frac{c}{2a+2b-c}\)
\(\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2ab+2bc-b^2}+\frac{c^2}{2ac+2bc-c^2}\)
đặt pt là P
\(P\ge\frac{\left(a+b+c\right)^2}{2ab+2ac-a^2+2ab+2bc-b^2+2ac+2bc-c^2}\)
\(P\ge\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-a^2-b^2-c^2}\)
\(a^2+b^2+c^2\ge2ab+2bc+2ca\)(BĐT tương đương)
\(P\ge\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-a^2-b^2-c^2}\ge\frac{\left(a+b+c\right)^2}{2ab+2ac+2bc}\)
\(\left(a+b+c\right)^2\ge2ab+2ac+2bc\)(BĐT tương đương)
\(P\ge1\)
mình ko chắc đã đúng
Cho các số thực dương \(a;b;c\) thỏa mãn : \(a+b+c=3\). Chứng minh rằng :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều ạ!
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{ab}{2b}\right)\)
\(=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Tương tự:
\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{b}{2}\right)\)
\(\dfrac{ac}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ac}{b+c}+\dfrac{ac}{a+b}+\dfrac{c}{2}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{bc+ac}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(P\le\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho mình hỏi tìm x của đa thức:
a ) 8x4 + 12x3 + 6x2 + x = 0. b ) 4x2 - (2x - 3)(2x + 3) = 9x
Hỏi: \(\frac{a-2ab-b}{2a+3ab-2b}\) bằng bao nhiều khi: \(\frac{1}{a}-\frac{1}{b}=1\), số thực khác 0 và 2a + 3ab - 2b khác 0
Tính A: A= 12x3 - 7x2 - 16x + 14
Ghi ra cách giỏi luôn càng tốt nha các bạn ! Cảm ơn các bạn nhiều
a/ \(\Leftrightarrow x\left(8x^3+12x^2+6x+1\right)=0\Leftrightarrow x\left[\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\right]=0\)
\(\Leftrightarrow x\left(2x+1\right)^3=0\Rightarrow\orbr{\begin{cases}x=0\\\left(2x+1\right)^3=0\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\end{cases}}\)
b/ \(\Leftrightarrow4x^2-\left(4x^2-9\right)=9x\Leftrightarrow9x=9\Leftrightarrow x=1\)
c/ Từ \(\frac{1}{a}-\frac{1}{b}=1\Rightarrow a-b=-ab\) thay vào biểu thức
\(\Rightarrow\frac{-ab-2ab}{-2ab+3ab}=\frac{-3ab}{ab}=-3\)
Cho a + 1 ≤ b + 2. So sánh 2 số 2a + 2 và 2b + 4 nào dưới đây là đúng?
A. 2a +2 > 2b + 4
B. 2a + 2 < 2b + 4
C. 2a + 2 ≥ 2b + 4
D. 2a + 2 ≤ 2b + 4
Nhân cả hai vế của bất đẳng thức a + 1 ≤ b + 2 với 2 > 0 ta được
2(a + 1) ≤ 2(b + 2) Û 2a + 2 ≤ 2b + 4.
Đáp án cần chọn là: D
Cho a - 2 ≤ b - 1. So sánh 2 số 2a - 4 và 2b - 2 nào dưới đây là đúng?
A. 2a - 4 > 2b - 2
B. 2a - 4 < 2b - 2
C. 2a - 4 ≥ 2b - 2
D. 2a - 4 ≤ 2b - 2
Nhân cả hai vế của bất đẳng thức a - 2 ≤ b - 1 với 2 > 0 ta được:
2(a - 2) ≤ 2(b - 1) Û 2a - 4 ≤ 2b - 2.
Đáp án cần chọn là: D
Cho a + 1 ≤ b + 2. So sánh hai số 2a + 2 và 2b + 4 nào dưới đây đúng ?
A. 2a + 2 > 2b + 4
B. 2a + 2 < 2b + 4
C. 2a + 2 ≤ 2b + 4
D. 2a + 2 ≥ 2b + 4
Với ba số a, b và c mà c > 0, ta có: Nếu a ≤ b thì ac ≤ bc
Khi đó, ta có: a + 1 ≤ b + 2 ⇒ 2( a + 1 ) ≤ 2( b + 2 ) ⇔ 2a + 2 ≤ 2b + 4.
Chọn đáp án C.