Những câu hỏi liên quan
NH
Xem chi tiết
AH
30 tháng 11 2021 lúc 8:35

Lời giải:
Áp dụng BĐT AM-GM:

$\text{VT}=\sqrt{ab+c(a+b+c)}+\sqrt{bc+a(a+b+c)}+\sqrt{ca+b(a+b+c)}$

$=\sqrt{(c+a)(c+b)}+\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}$
$\leq \frac{c+a+c+b}{2}+\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}$

$=2(a+b+c)=2$
Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

Bình luận (0)
H24
Xem chi tiết
TN
19 tháng 7 2017 lúc 11:20

Từ \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)và \(\hept{\begin{cases}b\ge b^2\\c\ge c^3\\abc\ge0\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)

\(\Rightarrow a+b+c-\left(ab+bc+ca\right)+abc\le1\)

\(\Rightarrow a+b^2+c^3-\left(ab+bc+ca\right)\le1\)

Bình luận (0)
MH
Xem chi tiết
TT
1 tháng 12 2019 lúc 23:40

Cho thêm điều kiện đi bạn VD a+b+c=3

Bình luận (0)
 Khách vãng lai đã xóa
0D
Xem chi tiết
TH
26 tháng 4 2022 lúc 22:17

-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.

Bình luận (2)
H24
Xem chi tiết
H24
6 tháng 3 2018 lúc 12:47

Ta có: (a-b)^2 ≥ 0

(=). a^2+b^2≥2ab

Tương tự: b^2+c^2 ≥ 2bc

                  c^2+a^2 ≥ 2ca

Suy ra 2×(a^2+b^2+c^2) ≥ 2×(ab+BC+ca)

(=) a^2+b^2+c^2 ≥ ab+bc+ca

Dấu bằng xảy ra khi: a=b=c

Bình luận (0)
ZZ
21 tháng 7 2020 lúc 21:20

\(a^2+b^2\ge2\sqrt{a^2b^2}\ge2ab\)

\(b^2+c^2\ge2\sqrt{b^2c^2}\ge2bc\)

\(c^2+a^2\ge2\sqrt{c^2a^2}\ge2ca\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Bình luận (0)
 Khách vãng lai đã xóa
SL
Xem chi tiết
PB
Xem chi tiết
CT
23 tháng 6 2018 lúc 6:30

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
HN
Xem chi tiết
H24
10 tháng 8 2023 lúc 21:28

tử vế phải là 3 hay 2 vậy bạn.

Bình luận (0)
LT
Xem chi tiết
TN
8 tháng 6 2016 lúc 17:36

a) đề sai à bạn 4/a+b chứ

Bình luận (0)
TN
8 tháng 6 2016 lúc 17:49

b)Theo BĐT Côsi:

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\left(\frac{ab}{c}.\frac{bc}{a}\right)}=2b\)

Tương tự ta có:

\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)

Cộng vế với vế của 3 bđt trên rồi chia 2 vế bđt thu được cho 2 ta có ngay đpcm. 

Đẳng thức xảy ra khi a = b = c

Bình luận (0)