Tìm các số nguyên dương a, b, c, d thỏa mãn a! + b! + c! = 2d! trong đó kí hiệu n! = 1.2.3...n.
Tìm các số nguyên dương n không lớn hơn 2015 thỏa mãn [n/2]+[n/3]+[n/4]=n/2+n/3+n/4 ( kí hiệu [a] là số nguyên lớn nhất không vượt quá a)
Ta có: \(\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]=\frac{n}{2}+\frac{n}{3}+\frac{n}{4}\)
Mà \(\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]\) có kết quả là số nguyên
Nên \(\frac{n}{2}+\frac{n}{3}+\frac{n}{4}\) cũng phải có kết quả là số nguyên. Hay \(\frac{n}{2};\frac{n}{3};\frac{n}{4}\) đều là số nguyên.
=> n chia hết cho cả 2;3 và 4
Vậy n sẽ là Bội của 2;3;4 hay n = 24k (k \(\in\) N*, k < 84) (BCNN(2;3;4)=24)
\(n\in\left\{24;48;72;96;120;...;1992\right\}\) Không có số 0 vì số 0 không phải là số nguyên dương.
Tìm GTNN của các phân số có dạng (a+b)/a*c+b*d , trong đó a,b,c,d là các số nguyên dương thỏa mãn điều kiện a+b=c+d=2006
Bài 2 :
a, Cho các số a,b,c,d là các số nguyên dương đôi 1 khác nhau và thỏa mãn :
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\) . Chứng minh \(A=abcd\) là số chính phương
b, Tìm nguyên a để \(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)
Với mỗi số nguyên dương k, kí hiệu k!= 1.2.3.....k. Cho số nguyên n>3. CMR:A=1!+2!+...+n! không thể biểu diễn dưới dạng a^b, với a,b là các số nguyên,b>1
* Ta chứng minh A = 1!+2!+....+n! không phải là số chính phương
Ta có 1!+2!+3!+4! chia 10 dư 3
5!+6!+....+n! chia hết cho 10
Vậy A chia 10 dư 3 => A không phải là số chính phương nên A không thể là lũy thừa với số mũ chẵn (1)
* Chứng mịnh A không thể là lũy thừa với mũ lẻ
+) Với n= 4 => 1!+2!+3!+4!=33 không là lũy thừa một số nguyên
+) Với n lớn hơn hoặc bằng 5
Ta có 1!+2!+3!+4!+5! chia hết cho 9
6!+7!+....+n! chia hết cho 9
=> A chia hết cho 9
+) Ta thấy 9!+10!+...+n! chia hết cho 7
còn 1!+2!+...+8! chia cho 27 dư 9 (2)
Từ (1) và (2) suy ra A không phải là lũy thừa của một số nguyên ( với n>3 ; b>1)
Cho các số \(a,b,c,d\) nguyên dương đôi một khác nhau và thỏa mãn: \(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\). Chứng minh \(A=abcd\) là số chính phương.
Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)
hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)
\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))
\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)
\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)
\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)
\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac=bd\) (do \(b\ne d\))
Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)
Tìm số nguyên dương n lớn nhất để bất đẳng thức sau thỏa mãn
\(\frac{1}{\sqrt[n]{\left(na+b+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+nb+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+b+nc\right)^4}}\le\frac{3}{16}\)
trong đó a,b,c là các số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\)
Đặt bđt là (*)
Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :
\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)
\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)
Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)
Hay \(n\le2\)
Với n=2 . Thay vào (*) : ta cần CM BĐT
\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)
Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
Tương tự ta có:
\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)
Ta cần CM:
\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)
=> đpcm
Dấu '=' xảy ra khi a=b=c
=> số nguyên dương lớn nhất : n=2( thỏa mãn)
cho các số a,b,c,d nguyên dương và thỏa mãn:
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
cm:A=abcd là số chính phương
Bạn đưa về như họ là đc , mk thử giúp bạn
(2a + b)/(a+b) = (a+a+b)/(a+b) = a/(a+b) + (a+b)/(a+b) = a/(a+b) + 1
Ở câu hỏi tương tự người ta đưa về dạnh này
bạn xem câu hỏi tương tự ý
Hộ bài này vs các pro
Cho a,b,c,d là các số nguyên trong đó c,d là 2 số nguyên liên tiếp thỏa mãn \(a-b=a^2c-b^2d\)
Chứng minh \(|a-b|\)là số chính phương
Vì c, d là 2 số nguyên liên tiếp nên \(d=c+1\)
Thay vào đẳng thức \(a-b=a^2c-b^2d\)ta được
\(a-b=a^2c-b^2\left(c+1\right)\)
\(\Leftrightarrow\left(a-b\right)\left[c\left(a+b\right)-1\right]=b^2\)
Dễ dàng chứng minh được \(\left(a-b,c\left(a+b\right)-1\right)=1\)
nên \(\left|a-b\right|\)là số chính phương
Tui lười nghĩ đoạn CM nguyên tố cùng nhau lắm @@
Cho các số a, b, c, d nguyên dương đôi một khác nhau và thỏa mãn :
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
CMR A = abcd là số chính phương.