CMR :phương trình ax^2 +bc+c=x(a#o) vô ngiệm thì pt a(ax^2+bc+c)^2+b(ax^2+bx+c)+c=x cũng vô nghiệm.
cho a,b,c; c khác 0 biết 2 phương trình x2 + ax + bc= 0 ; x2 + bx + ca=0 có 1 nghiệm chung duy nhất. cmr: 2 nghiệm còn lại là 2 nghiệm của phương trình x2+cx+ab=0
Cho phương trình \(\left(x^2+ax+1\right)^2+a\left(x^2+ax+1\right)+1=0\) với a là tham số. Khi phương trình có nghiệm thực duy nhất, cmr a > 2
Sai đề.
Tại a=3 thay vào pt ban đầu \(\Rightarrow\left(x^2+3x+1\right)^2+3\left(x^2+3x+1\right)+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+1=\dfrac{-3+\sqrt{5}}{2}\\x^2+3x+1=\dfrac{-3-\sqrt{5}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x+\dfrac{5-\sqrt{5}}{2}=0\left(1\right)\\x^2+3x+\dfrac{5+\sqrt{5}}{2}=0\left(2\right)\end{matrix}\right.\)
Bấm máy thấy pt (1) có hai nghiệm, pt (2) vô nghiệm => Tại a=3 thì pt ban đầu có 2 nghiệm (Trái với điều phải cm)
cho 3 số thực a,b,c khác 0 thoả mãn pt ax+c/x=b có nghiệm thực. cmr ít nhất một trong 2 phương trình ax+c/x=b-1 và ax+c/x=b+1 có nghiệm thực
bài này dùng delta mọi người giúp mình với
cho a,b,c là các số dương đôi một khác nhau có tổng là 12.CMR trong ba phương trình sau có một phương trình vô nghiệm 1 phương trình có nghiệm
(1) x2+ax+b=0
(2)x2+bx+c=0
(3)x2+cx+a=0
Cho a,b,c là các số dương đôi một khác nhau sao cho a+b+c = 12. CMR trong 3 phương trình sau có 1 phương trình có nghiệm, một phương trình vô nghiệm:
\(x^2+ax+b=0\); \(x^2+bx+c=0\); \(x^2+cx+a=0\)
Ta có:
\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)
Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)
Khi đó có ít nhất một phương trình có nghiệm
còn c/m vô nghiệm thế nào z
CMR: nếu 2 phương trình
\(x^2+ax+b=0\) và \(x^2+cx+d=0\)
có nghiệm chung thì \(\left(b-d\right)^2+\left(a-c\right)\left(ad-bc\right)\)
Gọi nghiệm chung phương trình là x2
Phương trình x2 + ax + b = 0 có nghiệm
\(x_1+x_2=-a;x_1.x_2=b\)
Tương tự với phương trình x2 + cx + d = 0
=> \(x_3+x_2=-c;x_2.x_3=d\)
Khi đó b - d = x2(x1 - x3)
a - c = x3 - x1
ad - bc = -(x1 + x2).x2.x3 + x1.x2(x3 + x2) = \(x_2^2\left(x_1-x_3\right)\)
Khi đó P = (b - d)2 + (a - c)(ad - bc)
= \(\left[x_2\left(x_1-x_3\right)\right]^2-\left(x_1-x_3\right)x_2^2\left(x_1-x_3\right)=0\)(đpcm)
... thì \(\left(b-d\right)^2+\left(a-c\right)\left(ad-bc\right)=0\)
Sorry, tui ghi thiếu
cho 3 phương trình
\(\hept{\begin{cases}x^2-ax+1=0\\x^2-bx+1=0\\x^2-cx+1=0\end{cases}}\)
thỏa mãn a+b+c =6 CMR trong 3 phương trình đã cho có ít nhất 1 phương trình có nghiệm phân biệt
Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.
\(x^2-2x+1=0\)
\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.
Vậy đề bài sai.
Nếu xét các trường hợp khác thì sao alibaba ??
Ta có
\(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\)
\(\ge2\left(a+b+c\right)-15=12-15=-3\)
Chẳng nói lên được gì hết
1, cho R=(2căn(a) +3căn(b))/(căn(ab) +2căn(a)-3căn(b)-6) - (6- căn(ab))/(căn(ab) +2căn(a)+3căn(b)+6)
a, Rút gọn
b, cmr nếu R=(b+81)/(b-81) thì b/a là một số chia hết cho 3
2, Giải phương trình: a, 4x^2 +1/x^2 +7=8x + 4/x b,2x^2 + 2x +1 = căn(4x+1)
3, Hình vuông ABCD , AC giao BD tại E . một đường thẳng qua A cắt bc tại M; cắt CD tại N. Gọi K là giao điểm EM và BN. cmr: CK vuông góc với BN
4, cho a,b,c; c khác 0 biết 2 phương trình x^2 + ax + bc=o; x^2 + bx + ca=0 có 1 nghiệm chung duy nhất. cmr 2 nghiệm còn lại là 2 nghiệm của phương trình x^2+cx+ab=0
cho P(x)=x^3+ax^2+bx+c; Q(x)=x^2+x+2013. Biết phương trình P(x)=0 có 3 nghiệm phân biệt, còn phương trình P(Q(x))=0 vô nghiệm. CMR: P(2013)>1/64
+) Ta có: P(x) = 0 có 3 nghiệm phân biệt
=> Gọi 3 nghiệm đó là m; n ; p.
=> P(x) = ( x - m ) ( x - p ) (x - n)
=> P(Q(x)) = ( x^2 + x + 2013 -m )( x^2 + x + 2013 -n )( x^2 + x + 2013 - p )
Vì P(Q(x)) =0 vô nghiệm nên: x^2 + x + 2013 - m = 0 ;x^2 + x + 2013 - m = 0; x^2 + x + 2013 - m = 0 đều vô nghiệm
=> \(\Delta_m=1^2-4\left(2013-m\right)< 0;\Delta_n=1^2-4\left(2013-n\right)< 0;\Delta_p=1^2-4\left(2013-p\right)< 0\)
=> \(2013-m>\frac{1}{4};2013-n>\frac{1}{4};2013-p>\frac{1}{4}\)
=> P(2013) = ( 2013 - m) (2013 -n ) (2013 - p) >\(\frac{1}{4}.\frac{1}{4}.\frac{1}{4}=\frac{1}{64}\)