Cmr : có số tự nhiên được viết bởi các chữ số 0 và chữ số 7 mà số đó chia hết cho 2015
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng tồn tại một số tự nhiên chỉ được viết bởi chữ số 2 và chữ số 0 mà
số đó chia hết cho 2015.
vì số cuối là 0 còn bên kia là 5
vì 0 chia hết cho 5 nên 20 chia hết cho 2015
Mình cũng cần giúp, mong các bạn giúp đỡ mik và bạn Đinh Hà!
Chứng minh rằng tồn tại 1 số tự nhiên được viết bởi chữ số 2 và 0 mà số đó chia hết cho 2015
chứng minh rằng luôn tồn tại số tự nhiên được viết bởi chỉ các chữ số 0 và các chữ số 7 mà số đó chia hết cho 1995
chứng minh rằng luôn tồn tại số tự nhiên được viết bởi chỉ các chữ số 0 và các chữ số 7 mà số đó chia hết cho 1995
Chứng minh rằng tồn tại một số tự nhiên chỉ được viết bởi chữ số 2 và chữ số 0 mà số đó chia hết cho 2015
Có ai biết làm không giúp mình với
Xét 2015 số:
\(a_1=2\)
\(a_2=22\)
...
\(a_{2015}=222...2\)(2015 chữ số 2)
Nếu như có một trong 2015 số này chia hết cho 2015 thì bài toán được cm (do số đó chỉ gồm các chữ số 2
Nếu như không có số nào chia hết cho 2015, thì thì theo nguyên lí Dirichlet ít nhất 2 trong 2015 số này có cùng số dư khi chia 2015 (do chỉ có tối đa 2015 số dư từ 1 đến 2014). Hai số này chia hết cho 2015 do cùng số dư
Giả sử hai số đó là \(a_i\)và \(a_j\)(i<j)
\(\Rightarrow a_j-a_i=222...200...0\)(có i chữ số 0 và j-i chữ số 2) chia hết cho 2015
\(\Rightarrow\)đpcm
chứng minh rằng tồn tại một số tự nhiên chỉ được viết bởi chữ số 2 và chữ số 0 mà chia hết cho 2015
20 hay sao ay ban a
kb voi mk nha nha nha
tk mk nha nha nha
mk se k va kb lai
Bài 1: Dùng ba trong bốn chữ số 7, 6, 2. 1 viết tất cả các số tự nhiên có ba chữ số chia hết cho cả ba số 2, 3, 9
Bài 2: Dùng ba trong bốn chữ số 8, 6, 1, 0 viết tất cả các số có ba chữ số sao cho:
a) Số đó chia hết cho 9
b) Số đó chia hết cho 3 mà không chia hết cho 9
c) Số đó chia hết cho cả 2 và 5
Bài 3: Viết số tự nhiên nhỏ nhất chia hết cho 9 mà chỉ viết bởi các chữ số 3
Tổng 3 chữ số của số bé nhất có 3 chữ số có tích 3 chữ số bằng 3 là ?
CMR: tồn tại một số tự nhiên chỉ viết bởi hai chữ số 0 và 2 mà số đó chia hết cho 2010
đề đúng . Thuộc phần nguyên lí đi rích lê
CMR tồn tại 1 số tự nhiên được tạo thành từ các chữ số 0 và 2 mà số đó chia hết cho 2015.
(bạn nào biết giải nhanh giúp mình với)
Giả sử :
Ta có dãy số gồm \(2015\) số hoàn toàn tạo bởi số \(2\) : \(2;22;222;...;22..22\) ( \(2015\) số \(2\))
Nếu trong dãy số trên có số chia hết cho \(2015\) thì bài được chứng minh
Nếu không có số nào trong dãy cho trên chia hết cho \(2015\) thì :
Lần lượt chia các số trong dãy số cho \(2015\) ta được số dư từ \(1 -> 2014\)
Ta sẽ có ít nhất \(2\) số chia cho \(2018\) có cùng số dư (Theo nguyên lý dirichlet)
Gọi hai số đó là (an<an2)
Khi đó : (an2) - an = 2...0...( có n chữ số 2 và n2 - n chữ số 0) \(\vdots\) 2015 (đpcm)