Timf x;y thuộc N biết y+1 chia hết cho x;x+1 chia hết cho y
(2020-4x)/x=100x timf x
mk ko ghi dau dc
\(\frac{2020-4x}{x}=100x\)
<=> 2020 - 4x = x.100x
<=> 2020 - 4x = 100x2
<=> 100x2 + 4x - 2020 = 0
<=> 4( 25x2 + x - 505 ) = 0
<=> 25x2 + x - 505 = 0
Tới đây không giải nữa :)) Lớp 6 làm gì đã học pt bậc 2 :))
Xem lại đề nhé ^^
\(\frac{\left(2020-4x\right)}{x}=100\)
đề như này à
TImf GTLN của P=\(x+\sqrt{4-x}\)
\(P=-\left(\left(4-x\right)-\sqrt{4-x}+\dfrac{1}{4}\right)+\dfrac{17}{4}=-\left(\sqrt{4-x}-\dfrac{1}{2}\right)^2+\dfrac{17}{4}\le\dfrac{17}{4}\)
Dấu "=" xảy ra khi \(\sqrt{4-x}-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{15}{4}\)
timf x biet x^13=27.x^10
x^13=27.x^10
x^13:x^10=27
x^3=27
vì 3^3=27
=> x=3
vậy x = 3
x13 = 27 . x10
=> x13 : x10 = 27
=> x3 = 27
=> x = 3
x13=27.x10
=> x13:x10=27
=>x3=27
=>x3=33
=>x=3
timf x
(x-1)^2 -9(x-2)^2=0
\(\Leftrightarrow x^2-2x+1-9x^2+36x-36=0\\ \Leftrightarrow-8x^2+34x-35=0\\ \Leftrightarrow8x^2-34x+35=0\\ \Leftrightarrow8x^2-20x-14x+35=0\\ \Leftrightarrow\left(2x-5\right)\left(4x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{7}{4}\end{matrix}\right.\)
Bai 2 timf x biết
A) -2x(x-4)=0
\(-2x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\x-4=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(-2x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
timf x biet 1+2+3+...+ x =55
côn thức[ số đầu + số cuối ] . các số hạng / 2 = kết quả
[1+x].b/2=55
=55.2=110
=[1+10].10/2=55
=x=10
tớ chỉ có thể giải thích thế này thôi nên thứ lỗi
Timf y :
5 x y + 3,75 x y + 1,25 = 2
\(5\times y+3,75\times y+1,25=2\\ \Rightarrow\left(5+3,75\right)\times y=0,75\\ \Rightarrow8,75\times y=0,75\\ \Rightarrow y=\dfrac{3}{35}\)
timf x,y (x-1)^2+(y+3)^2=0
\(\left(x-1\right)^2+\left(y+3\right)^2=0\left(1\right)\)
Ta thấy \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0,\forall x\\\left(y+3\right)^2\ge0,\forall y\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+1\right)^2=0^2\\\left(y+3\right)^2=0^2\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+1=0\\y+3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
timf x-210=-1+-2+-3+....+(-x+1)+(-x) vay x=
Timf x:
x+1=(x+1)2
Ta có :
\(\left(x+1\right)^2=x+1\)
\(\Rightarrow\left(x+1\right)^2-\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)x=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-1\\x=0\end{array}\right.\)
Vậy x = - 1 ; x = 0