tìm so tu nhien n de (3n+10) chia hết cho (n+2)
cho 2^100 va 5^100. lap thanh 1 so. hoi so do co bao nhieu chu so
tim cac so tu nhien n de n^10+1 chia hết cho 10
co ton tai so tu nhien n de n^2+n+2 chia het cho 5 hay khong
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
Toi quen mat cach lam roi xin loi nhe
Tim so tu nhien n de (3n+8) chia het cho (n+2) la
3n + 8 chia hết cho n + 2
3n + 6 + 2 chia hết cho n + 2
2 chia hết cho n + 2
U(2) = {1;2}
n là số tự nhiên => n = 0
Tim so tu nhien n de 3n + 18 chia het cho n + 5
3n + 18 chia hết cho n + 5
=> 3n + 18 - 3(n + 5) chia hết cho n + 5
=> 3n + 18 - (3n + 15) chia hết cho n + 5
=> 3n + 18 - 3n - 15 chia hết cho n + 5
=> (3n - 3n) + (18 - 15) chia hết cho n + 5
=> 0 + 3 chia hết cho n + 5
=> 3 chia hết cho n + 5
=> n + 5 thuộc Ư(3)
=> n + 5 thuộc {1 ; 3}
=> n thuộc {-4 ; -2}
Vì n là số tự nhiên nên không có n (n thuộc tập hợp rỗng)
Tim so tu nhien n de (3n+5) chia hey cho (n+1)
Ta có:
\(3n+5⋮n+1\)
\(\Leftrightarrow3n+3+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(n+1\inƯ\left(2\right)=\left\{1;2\right\}\)
TH1 : n+1 = 1 => n=0
TH2 : n+1 = 2 => n = 1
Vậy n \(\in\){0;1}
3n + 5 \(⋮\)n + 1
=> 3n + 3 + 2 \(⋮\)n + 1
=> 3 . ( n + 1 ) + 2 \(⋮\)n + 1 mà 3.( n + 1 ) \(⋮\)n + 1 => 2 \(⋮\)n + 1
=> n + 1 thuộc Ư ( 2 ) = { 1 ; 2 }
=> n thuộc { 0 ; 1 }
Vậy n thuộc { 0 ; 1 }
Tim so tu nhien n khac 1 de 3n+5 chia het cho n
tim so tu nhien n khac 1 de 3n+5 chia het cho n
tim so tu nhien n khac 1 de 3n+5 chia het cho n
3n + 5 chia hết cho n
Mà 3n chia hết cho n
=> 5 chia hết cho n
n thuộc U(5) = {1;5}
Mà n khác 1 do đó n = 5
Tim cac so tu nhien n de n10 + 1 chia hết cho 10