2005*2004-1/2005*2003-2004
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
So sánh:2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
Câu hỏi của linh phạm - Toán lớp 6 - Học toán với OnlineMath
So Sánh 2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
So sánh:
2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
(1/2003+1/2004-1/2005)/(5/2003+5/2004-5/2005)-(2/2002+2/2003-2/2004)/(3/2002+3/2003-3/2004)
Tinh nhanh :
a) Tu so : 2005*2007-1
Mau so : 2004+2005*2006
b) Tu so : 2003*2004+2005*10+1994
Mau so: 2005*2004-2003*2004
a) \(\frac{2005.2007-1}{2004+2005.2006}=\frac{\left(2014+1\right).2007-1}{2004+2005.2006}=\frac{2004+2005.2007-1}{2004+2005-2006}=\frac{2004+2005.2006}{2004+2005.2006}=1\)
2005 * 2004 -1/ 2003*2005+2004
I, Tìm x: a, \(\dfrac{x-2004}{2003}+\dfrac{x-2003}{2005}+\dfrac{x-2005}{2004}=3+\dfrac{2005}{2004}+\dfrac{2004}{2005}\)
so sánh M,N
M=\(\dfrac{2003}{2004}+\dfrac{2004}{2005}\)
N=\(\dfrac{2003+2004}{2004+2005}\)
Ta có:
N=\(\dfrac{2003+2004}{2004+2005}\)=\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)
Ta thấy:
\(\dfrac{2003}{2004+2005}\)<\(\dfrac{2003}{2004}\)(1)
\(\dfrac{2004}{2004+2005}\)<\(\dfrac{2004}{2005}\)(2)
Từ (1) và (2) --> M=\(\dfrac{2003}{2004}\)+\(\dfrac{2004}{2005}\)>\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)=N
Vậy M>N
Tìm x: a, \(\frac{x-2004}{2003}+\frac{x-2003}{2004}+\frac{x-2005}{2004}=3+\frac{2005}{2003}\)\(+\frac{2004}{2005}\)
c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15)
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3