Cho A = (1.2.....2015)(1+\(\frac{1}{2}+...+\frac{1}{2015}\))
CMR A chia hết cho 2016
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
Cho A = ( 2015 ^ 2016 - 1 ).( 2015 ^ 2016 + 1 ) CMR :
A chia hết cho 4
A chia hết cho 12
Do 2015^2016 lẻ nên 2015^2016-1 và 2015^2016+1 chẵn nên chia hết cho 2 do đó A chia hết cho 4
Ta có 3 số nguyên lên liếp 2015^2016-1; 2015^2016 và 2015^2016+1 luôn có 1 số chia hết cho 3
Do 2015 ko chia hết cho 3 nên 2015^2016 ko chia hết cho 3
Nên 2015^2016-1 hoặc 2015^2016+1 chia hết cho 3
Suy ra A chia hết cho 3
Mà A chia hết cho 4 nên A sẽ chia hết cho 3.4=12
Vậy A chia hết cho 12
Cho A = (20152016 - 1) . (20152016 + 1). CMR :
a, A chia hết cho 4
b, A chia hết cho 12
Cho \(A=1.2.3....2015.2016.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)\)
Chứng tỏ A là số tự nhiên chia hết cho 2017
Cho \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017};B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\).CMR B/A là số nguyên
Ta có :
\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)
\(B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)
\(B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)
\(B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}=2017\)
Vậy \(\frac{B}{A}\)là số nguyên
Các bạn ơi . Giup mình với ạ!!!
1. Cho đa thức \(^{f\left(x\right)}=x^{2016}+2x^{2015}+3x^{2014}+........+2014x+2015\)
CMR: Đa thức trên không có nghiệm nguyên.
2.Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{37.38}\) và \(B=\frac{1}{20.38}+\frac{1}{21.37}+.......+\frac{1}{38.20}\)
Chứng minh rằng :\(\frac{A}{B}\) là một số nguyên .
cho A =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
Chứng minh A <\(\frac{2015}{2016}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(A< 1-\frac{1}{2016}\)
\(A< \frac{2015}{2016}\left(đpcm\right)\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}\)
\(=\frac{2015}{2016}\)
\(\Rightarrow A< \frac{2015}{2016}\)
a) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}.\) Chứng minh rằng: A < 1
b) Cho B= \(2^1+2^2+2^3+...+2^{2016}\) Chứng minh rằng: B chia hết cho 21
1 a) CMR : Nếu \(\frac{a+2016}{a-2016}=\frac{b+2015}{b-2015}\)
Thì \(\frac{a}{2016}=\frac{b}{2015}\)
ta có : \(\frac{a+2016}{a-2016}=\frac{b+2015}{b-2015}\)
=> \(\frac{a+2016}{b+2015}=\frac{a-2016}{b-2015}\)
=> Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a+2016}{b+2015}=\frac{a-2016}{b-2015}=\frac{a+2016+a-2016}{b+2015+b-2015}=\frac{2a}{2b}=\frac{a}{b}\)
=> \(\frac{a+2016}{b+2015}=\frac{a}{b}\)
=> b(a+2016)=a(b+2015)
=>ba+b.2016= ab+a.2015
=>b.2016=a.2015 ( Rút gọn 2 vế với ab)
=>\(\frac{b}{2015}=\frac{a}{2016}\left(đpcm\right)\)
Nếu: \(\frac{a+2016}{a-2016}\)= \(\frac{b+2015}{b-2015}\)
(a + 2016).(b - 2015) = (b + 2015).(a - 2016)
a.b - 2015.a + 2016.b - 2015.2016 = b.a - 2016.b + 2015.a - 2015.2016
2a.2015 = 2b.2016
a.2015 = b.2016
Thì: \(\frac{a}{2016}\)= \(\frac{b}{2015}\)