Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DW
Xem chi tiết
PA
1 tháng 9 2016 lúc 12:09

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

Bình luận (0)
AK
Xem chi tiết
DB
2 tháng 12 2018 lúc 16:08

Do 2015^2016 lẻ nên 2015^2016-1 và 2015^2016+1 chẵn nên chia hết cho 2 do đó A chia hết cho 4

Ta có 3 số nguyên lên liếp 2015^2016-1; 2015^2016 và 2015^2016+1 luôn có 1 số chia hết cho 3

Do 2015 ko chia hết cho 3 nên 2015^2016 ko chia hết cho 3

Nên 2015^2016-1 hoặc 2015^2016+1 chia hết cho 3 

Suy ra A chia hết cho 3

Mà A chia hết cho 4 nên A sẽ chia hết cho 3.4=12

Vậy A chia hết cho 12

Bình luận (0)
LN
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
TD
16 tháng 11 2017 lúc 18:15

Ta có :

\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)

\(B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)

\(B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)

\(B=2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)

\(\Rightarrow\frac{B}{A}=\frac{2017.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}=2017\)

Vậy \(\frac{B}{A}\)là số nguyên

Bình luận (0)
PH
Xem chi tiết
H24
Xem chi tiết
SG
9 tháng 8 2016 lúc 21:16

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(A< 1-\frac{1}{2016}\)

\(A< \frac{2015}{2016}\left(đpcm\right)\)

Bình luận (0)
OP
9 tháng 8 2016 lúc 21:20

\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}\)

\(\Rightarrow A< \frac{2015}{2016}\)

Bình luận (0)
ND
Xem chi tiết
HT
Xem chi tiết
LH
24 tháng 2 2016 lúc 19:54

ta có : \(\frac{a+2016}{a-2016}=\frac{b+2015}{b-2015}\)

=> \(\frac{a+2016}{b+2015}=\frac{a-2016}{b-2015}\)

=> Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a+2016}{b+2015}=\frac{a-2016}{b-2015}=\frac{a+2016+a-2016}{b+2015+b-2015}=\frac{2a}{2b}=\frac{a}{b}\)

=> \(\frac{a+2016}{b+2015}=\frac{a}{b}\)

=> b(a+2016)=a(b+2015)

=>ba+b.2016= ab+a.2015

=>b.2016=a.2015 ( Rút gọn 2 vế với ab)

=>\(\frac{b}{2015}=\frac{a}{2016}\left(đpcm\right)\)

Bình luận (0)
TK
24 tháng 2 2016 lúc 20:03

Nếu: \(\frac{a+2016}{a-2016}\)\(\frac{b+2015}{b-2015}\)

(a + 2016).(b - 2015) = (b + 2015).(a - 2016)

a.b - 2015.a + 2016.b - 2015.2016 = b.a - 2016.b + 2015.a - 2015.2016

2a.2015 = 2b.2016

a.2015 = b.2016 

Thì: \(\frac{a}{2016}\)\(\frac{b}{2015}\)

Bình luận (0)