Đa thức x3−3x+a chia cho đa thức x – 1 có số dư là 1 thì a bằng : a. 3 b. 1 c. 4 d. 2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm các hệ số a, b và c biết:
a) Đa thức x 3 +2ax + b chia hết cho đa thức x - 1 còn khi chia cho đa thức x + 2 được dư là 3.
b) Đa thức a x 3 + b x 2 + c khi chia cho đa thức x dư - 3 còn khi chia cho đa thức x 2 - 4 được dư là 4x - 11.
Biểu diễn đa thức A = B.Q + R trong đó Q, R là đa thức chia và đa thức dư trong phép chia A cho B.
a) A = x 3 - 4 x 2 - 12x và B = x + 2;
b) A = x 3 - 3 x 2 + 39x - 6 và B = x 2 - 5x +1;
c) A = 3 x 3 + 7 x 2 - 7x + 3 - 3 và B = 3 x 2 - 2x - 1.
a) A = ( x 2 – 6x)B.
b) A = (-x – 8)B + 2
c) A = (x + 3)B + 6.
1, Đa thức f(x) khi chia cho x+1 dư 4 khi chia x2+1 dư 2x+3. Tìm đa thức dư khi chia f(x) cho (x+1)(x2+1)
2, Cho P=(a+b)(b+c)(c+a)-abc với a,b,c là các số nguyên. CMR nếu a+b+c chia hết cho 4 thì P chia hết cho 4
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
Phép chia đa thức 2x4-3x3-3x-2 cho đa thức x2-1 được đa thức dư là A. 2. B. 3. C.4. D. 5.
Lời giải:
Ta có:
$2x^4-3x^3-3x-2=2x^2(x^2-1)-3x(x^2-1)+2x^2-6x-2$
$=(2x^2-3x)(x^2-1)+2(x^2-1)-6x$
$=(2x^2-3x+2)(x^2-1)-6x$
Vậy $2x^4-3x^3-3x-2$ chia $x^2-1$ dư $-6x$
Không có đáp án nào đúng
1 Phân tích đa thức thành nhân tử
b/3x^2 + 17xy+13x+39y+10y^2+14
2 Tìm các giá trị x,y thỏa mãn đẳng thức
9x^2+9y^2+10xy+4x-4y+2=0
3 Tìm GTLN-NN (nếu có)
a , A=5+4x-3x^2+2x^3-x^4
4 Tìm số dư trong phép chia f(x)=x^89+x^80-x^75+x^58-2x^3+x+3cho đa thức x^2 + 1
5 Cho đa thức f(x) . Biết đa thức f(x) chia cho x-1 thì dư 3 và chia cho x^2 + x +2 thì có dư là -7x+2.Tìm dư trong phép chia đa thức f(x) cho đa thức (x-1)(x^2 + x +2)
6 Cho đa thức A=x^2 + 2y^2- 3z^2+3xy-2xz-5yz
a,PT thành nhân tử
Cho đa thức A = x4 + x3 – 2x – 2
a) Tìm đa thức B sao cho A + B = x3 + 3x + 1
b) Tìm đa thức C sao cho A – C = x5
c) Tìm đa thức D biết rằng D = (2x2 – 3) . A
d) Tìm đa thức P sao cho A = (x+1) . P
e) Có hay không một đa thức Q sao cho A = (x2 + 1) . Q?
a) Ta có:
B = (A + B) – A
= (x3 + 3x + 1) – (x4 + x3 – 2x – 2)
= x3 + 3x + 1 – x4 - x3 + 2x + 2
= – x4 + (x3 – x3) + (3x + 2x) + (1 + 2)
= – x4 + 5x + 3.
b) C = A - (A – C)
= x4 + x3 – 2x – 2 – x5
= – x5 + x4 + x3 – 2x – 2.
c) D = (2x2 – 3) . A
= (2x2 – 3) . (x4 + x3 – 2x – 2)
= 2x2 . (x4 + x3 – 2x – 2) + (-3) .(x4 + x3 – 2x – 2)
= 2x2 . x4 + 2x2 . x3 + 2x2 . (-2x) + 2x2 . (-2) + (-3). x4 + (-3) . x3 + (-3). (-2x) + (-3). (-2)
= 2x6 + 2x5 – 4x3 – 4x2 – 3x4 – 3x3 + 6x + 6
= 2x6 + 2x5 – 3x4 + (-4x3 – 3x3) – 4x2+ 6x + 6
= 2x6 + 2x5 – 3x4 – 7x3 – 4x2+ 6x + 6.
d) P = A : (x+1) = (x4 + x3 – 2x – 2) : (x + 1)
Vậy P = x3 - 2
e) Q = A : (x2 + 1)
Nếu A chia cho đa thức x2 + 1 không dư thì có một đa thức Q thỏa mãn
Ta thực hiện phép chia (x4 + x3 – 2x – 2) : (x2 + 1)
Do phép chia có dư nên không tồn tại đa thức Q thỏa mãn
Tìm a và b biết đa thức x 3 +ax + b khi chia cho đa thức x-1 dư là 4 còn khi chia cho đa thức x - 5 dư là 112.
Xác định các hệ số a, b, c sao cho đa thức: \(f\left(x\right)=2x^4+ax^2+bx+c\) chia hết cho đa thức x-2 và khi chia cho đa thức: \(x^2-1\) thì có dư là x
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...
Tìm các hệ số a,b,c sao cho đa thức 3x^4+ax^2+bx+c chia hết cho đa thức (x-2) và chia cho đa thức (x^2-1) được thương và còn dư (-7x-1)