Những câu hỏi liên quan
TH
Xem chi tiết
NL
23 tháng 4 2022 lúc 22:33

ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)

\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)

\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)

\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)

\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)

\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)

Bình luận (1)
LN
Xem chi tiết
H24
Xem chi tiết
NA
10 tháng 8 2019 lúc 22:23

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt

Bình luận (0)
CM
Xem chi tiết
NC
26 tháng 10 2019 lúc 20:54

a/ \(A=\frac{1}{5+2\sqrt{6-x^2}}\)

Có: \(-x^2\le0\)với mọi x

=> \(6-x^2\le6\)

=> \(0\le\sqrt{6-x^2}\le\sqrt{6}\)

=> \(5\le5+2\sqrt{6-x^2}\le5+2\sqrt{6}\)

=> \(\frac{1}{5+2\sqrt{6}}\le\frac{1}{5+2\sqrt{6-x^2}}\le\frac{1}{5}\); với mọi x

=> \(\hept{\begin{cases}maxA=\frac{1}{5}\Leftrightarrow\sqrt{6-x^2}=0\Leftrightarrow x=\pm\sqrt{6}\\minA=\frac{1}{5+2\sqrt{6}}\Leftrightarrow\sqrt{6-x^2}=\sqrt{6}\Leftrightarrow x=0\end{cases}}\)

Vậy:...

b/ \(B=\sqrt{-x^2+2x+4}=\sqrt{-\left(x-1\right)^2+5}\)

Có: \(-\left(x-1\right)^2\le0\)với mọi x

=> \(-\left(x-1\right)^2+5\le5\)

=> \(0\le\sqrt{-\left(x-1\right)^2+5}\le\sqrt{5}\)

=> \(0\le B\le\sqrt{5}\)với mọi x

=> \(\hept{\begin{cases}maxB=\sqrt{5}\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x=1\\minB=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x=\pm\sqrt{5}+1\end{cases}}\)

Vậy:...

Bình luận (0)
 Khách vãng lai đã xóa
TC
26 tháng 10 2019 lúc 21:01

a)Ta có:

\(0\le2\sqrt{6-x^2}\le2\sqrt{6}\)

\(\Leftrightarrow\frac{1}{5}\ge\frac{1}{5+2\sqrt{6-x^2}}\ge\frac{1}{5+2\sqrt{6}}=5-2\sqrt{6}\)

\(\Rightarrow\hept{\begin{cases}MAX\left(A\right)=\frac{1}{5}\\MIN\left(A\right)=5-2\sqrt{6}\end{cases}}\)Dấu "=" xảy ra khi \(\hept{\begin{cases}x=0\left(MIN\right)\\x=\sqrt{6}\left(MAX\right)\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
TC
26 tháng 10 2019 lúc 21:10

b)Ta có:

\(0\le B=\sqrt{-x^2+2x+4}=\sqrt{5-\left(x-1\right)^2}\le\sqrt{5}\)

\(\Rightarrow\hept{\begin{cases}MAX\left(B\right)=\sqrt{5}\\MIN\left(B\right)=0\end{cases}}\)Dấu "=" xảy ra khi \(x=1\left(MAX\right)\) và \(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}\left(MIN\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NN
Xem chi tiết
VT
Xem chi tiết
PT
15 tháng 12 2016 lúc 4:45

mk ko bit

Bình luận (0)
AN
15 tháng 12 2016 lúc 10:12

Ta có

\(A=2x+\sqrt{4-2x^2}=\sqrt{\left(\sqrt{2}.\sqrt{2}x+1.\sqrt{4-2x^2}\right)^2}\)

\(\le\sqrt{\left(2+1\right)\left(2x^2+4-2x^2\right)}=\sqrt{3.4}=2\sqrt{3}\)

Vậy GTLN là \(2\sqrt{3}\)đạt được khi \(\frac{2}{\sqrt{3}}\)

Bình luận (0)
H24
Xem chi tiết
CM
26 tháng 5 2019 lúc 17:26

\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)

Bình luận (0)
MQ
26 tháng 5 2019 lúc 18:16

\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)

Dấu "=" xảy ra \(\Leftrightarrow\)

... 

Bình luận (0)
VH
Xem chi tiết
NQ
23 tháng 8 2021 lúc 12:14

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa