Cho đa thức g(x) thỏa mãn: (x-1)g(-x) + g(x) = x+2 đúng với mọi giá trị x. Tính g(-2)
Cho đa thức g(x) thỏa mãn: (x-1)g(-x) + g(x) = x+2 đúng với mọi giá trị x. Tính g(-2)
thayx=-2 ta có(-3)g(2)+g(-2)=0 (1)
thay x=2 ta có g(-2)+g(2)=4
->3g(-2)+3g(2)=12 (2)
lấy từng vế của (1)+(2) ta có
4g(-2)=12
->g(-2)=3
Vậy g(-2)=3
cho G = x-2/x+1
Tìm x để đẳng thức G.(x+1)=m.(x2-1)-3 thỏa mãn với mọi giá trị của m
Cho đa thức f(x)=5x^2 +4x -8 ; g(x)=x^2 - 2x a) Tính giá trị của đa thức f(x) tại x =-2 b) Tính f(x) + g(x) c) Tìm nghiệm của đa thức g(x) Giúp mình với ạ!
a: \(f\left(-2\right)=5\cdot4-8-8=4\)
b: \(f\left(x\right)+g\left(x\right)=6x^2+2x-8\)
c: Đặt G(x)=0
=>x(x-2)=0
=>x=0 hoặc x=2
Cho hàm số f(x) và g(x) có đạo hàm trên [1;4] và thỏa mãn hệ thức sau với mọi x ∈ [1;4]
f(1)=2g(1)=2; f'(x)= 1 x x . 1 g ( x ) ; g(x)= - 2 x x . 1 f ( x ) . Tính I= ∫ 1 4 [ f ( x ) . g ( x ) ] d x
Cho 2 đa thức:
f(x) = x(x2 - 2x + 7) - 1
g(x) = x(x2 - 2x -1) - 1
a/ Tính f(x) - g(x); f(x) + g(x)
b/Tìm nghiệm của đa thức f(x) - g(x)
c/ Tính giá trị biểu thức f(x) + g(x) tại x = -3/2
Giúp mình với ạ, mình tick cho :((
a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)
\(f\left(x\right)-g\left(x\right)=8x\)
\(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)
\(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)
b) 8x=0
=> x=0
=> Nghiệm đa thức f(x)-g(x)
c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :
\(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)
\(=6,75+9-9-2\)
\(=4,75\)
#H
Cho các đa thức: f(x)=ax^2+bx+c(a,b,c là các hằng số) và g(x)= (2009x+2010)^2. Tính a-b+c nếu biết f(x)=g(x) với mọi giá trị của biến x
Xét đa thức G(x) = x2 – 4. Giá trị của biểu thức G(x) tại x = 3 còn gọi là giá trị của đa thức G(x) tại x = 3 và được kí hiệu là G(3). Như vậy, ta có: G(3) = 32 - 4 = 5
Tính các giá trị G(-2); G(1); G(0); G(1); G(2).
G(-2) = (-2)2 – 4 = 4 – 4 = 0;
G(1) = 12 – 4 = 1 – 4 = -3;
G(0) = 02 – 4 = 0 – 4 = -4;
G(1) = 12 – 4 = 1- 4 = -3;
G(2) = 22 – 4 = 4 – 4 = 0
Bài 1.
1, Cho hai đa thức
f(x) = x5 - 3x4 + 7x3 - 9x2 + 8x - 2
g(x)= x2 -2x + a
Xác định giá trị của a để tồn tại đa thức p(x) thỏa mãn f(x)= g(x) . p(x) với mọi giá trị của x.
Bài 3.
Cho tam giác nhọn ABC, gọi H là trục tâm và O là tâm đường tròn ngoại tiếp tam giác ABC.
1) Chứng minh rằng AH=AO khi và chỉ khi BAC= 60o
2) BD, CE lần lượt là hai đường phân giác trong của góc B và C (D ∈ AC, E ∈ AB). M là điểm trên cạnh BC sao cho tam giác MDE là tam giác đều.
Chứng minh rằng AH=AO
Bài 1.
1, Cho hai đa thức
f(x) = x5 - 3x4 + 7x3 - 9x2 + 8x - 2
g(x)= x2 -2x + a
Xác định giá trị của a để tồn tại đa thức p(x) thỏa mãn f(x)= g(x) . p(x) với mọi giá trị của x.
Bài 3.
Cho tam giác nhọn ABC, gọi H là trục tâm và O là tâm đường tròn ngoại tiếp tam giác ABC.
1) Chứng minh rằng AH=AO khi và chỉ khi BAC= 60o
2) BD, CE lần lượt là hai đường phân giác trong của góc B và C (D ∈ AC, E ∈ AB). M là điểm trên cạnh BC sao cho tam giác MDE là tam giác đều.
Chứng minh rằng AH=AO
1:
\(f\left(x\right)=g\left(x\right)\cdot p\left(x\right)\)
=>\(p\left(x\right)=\dfrac{f\left(x\right)}{g\left(x\right)}\)
\(=\dfrac{x^5-3x^4+7x^3-9x^2+8x-2}{x^2-2x+a}\)
Để P(x) tồn tại với mọi x thì \(x^2-2x+a< >0\)(2) với mọi x
Giả sử \(x^2-2x+a=0\)(1)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot a=4-4a\)
Để phương trình (1)có nghiệm thì 4-4a>=0
=>a<=1
Do đó: Để bất phương trình (2) luôn đúng với mọi x thì a>1
Bài 3:
1:
AH=AO
=>H trùng với O
=>Tâm đường tròn ngoại tiếp ΔABC trùng với trực tâm của tam giác
=>ΔABC đều
=>\(\widehat{BAC}=60^0\)