phan tich da thuc thanh nhan tu: x(x+2)(x^2+2x+2)+1
Phan tich da thuc thanh nhan tu (1+2x)(1-2x)-x(x+2)(x-2)
\(\left(1+2x\right).\left(1-2x\right)-x.\left(x+2\right).\left(x-2\right)\))
\(=1-\left(2x\right)^2-x.x^2-2^2\)
\(=1-4x^2-x^3-4\)
Ko bt có đúng ko nữa
( 1 + 2x ) ( 1 - 2x ) - x ( x + 2 ) ( x - 2 )
= 1 - 4x2 - x ( x2 - 4 )
= 1 - 4x2 - x3 + 4x
= - ( x3 + 4x2 - 4x - 1 )
= - ( x3 - x2 + 5x2 - 5x + x - 1 )
= - [ x2 ( x - 1 ) + 5x ( x - 1 ) + ( x - 1 ) ]
= - ( x - 1 ) ( x2 + 5x + 1 )
phan tich da thuc thanh nhan tu (x^2-x+2)^2- 2x^2 +2x -7
phan tich da thuc thanh nhan tu
x^4+x^3+2x^2+x+1
x4+x3+2x2+x+1=x4+x3+x2+x2+x+1=(x4+x3+x2)+(x2+x+1)
=x2(x2+x+1)+(x2+x+1)
=(x2+x+1)(x2+1)
=(x^4+2x^2+1)+(x^3+x)
=(x^2+1)^2+x(x^2+1)
(x^+1)*(x^2+1+x0
phan tich da thuc thanh nhan tu
x^2-y^2+2x+1
Lưu ý rằng ba điều kiện đầu tiên yếu tố như (x + 1) ^ 2, do đó chúng ta có:
x^2 + 2x + 1 - y^2 = (x + 1)^2 - y^2.
(x + 1)^2 - y^2 = [(x + 1) + y][(x + 1) - y], từ a^2 - b^2 = (a + b)(a - b)
= (x + y + 1)(x - y + 1).
phan tich da thuc thanh nhan tu :x^5+2x^4+3x^3+2x^2+2x+1
x^5+2x^4+2x^3+2x^2+2x+1
=(x^5+x^4)+(x^4+x^3)+(x^3+x^2)+(x^2+x)+(x+1)
=x^4(x+1)+x^3(x+1)+x^2(x+1)+x(x+1)+(x+1)
=(x+1)(x^4+x^3+x^2+x+1)
phan tich da thuc thanh nhan tu
x^3+x+2
x^3-2x-1
1)
\(=\left(x+1\right)\left(x^2-x+2\right)\)
2)\(=\left(x+1\right)\left(x^2-x-1\right)\)
x3 + x + 2 = x3 + x + 1 + 1
= (x + 1)(x2 + x + 1) + (x+1)
=(x+1)(x2 +2x + 2)
x3 - 2x -1
phan tich da thuc thanh nhan tu (x^2+2x+3).(2x^2+2x+5)-8
Phan tich da da thuc thanh nhan phan tu
(x^2+x+1)(x^2+x+2)-12
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
phan tich da thuc thanh nhan tu
x^4+x^3+2x^2+x+1