Cho tam giác ABC có góc BAC=60 ,AB=6 cm,AC=10 cm,AD là phân giác.Tính AD.
bài 11 ΔABC có góc BAC = ,AB=6cm,AC=12 cm ,phân giác góc BAC cắt BC tại D.Tính AD?
bài 12 cho tam giác ABC có góc A =, AB=3cm,AC=6cm.Tính độ dài đường phân giác AD?
11:
\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot6\cdot12}{6+12}\cdot\dfrac{1}{2}=4\left(cm\right)\)
12:
\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot3\cdot6}{3+6}\cdot\dfrac{1}{2}=\dfrac{3\cdot6}{3+6}=\dfrac{18}{9}=2\left(cm\right)\)
Cho tam giác ABC có góc ABC =60 độ. AD, CE lần lượt là tia phân giác của góc BAC và ACB. I là giao điểm của AD và CE.
a) CM: góc IAC+ góc ACI= 60 độ
b)CM: Tứ giác BEID nội tiếp được trong một đường tròn
c)CM: IE=ID
d) Cho góc BAC= 90 độ, BI cắt AC tại F. CM: AI=\(\frac{\sqrt{2}.AB.AF}{AB+AF}\)
ho tam giác abc có ab=ac,ad là tia phân giác của góc bac cm da=dc
Xét ΔBAD và ΔCAD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔBAD=ΔCAD
Suy ra: BD=CD
Bài 3. Cho tam giác ABC có AD là phân giác của góc BAC, D in BC a) Cho biết AB = 10 cm , AC = 12 cm BD = 4 cm . Tính độ dài đoạn thẳng BC. b) Qua D kẻ đường thẳng song song với AB, cắt AC tại E. Gọi M là trung điểm của AB, AD cắt EM tại I, BE cắt MD tại K. Chứng minh rằng: (IE)/(IM) = (KD)/(KM) . Từ đó chứng minh: IK//ED
Cho tam giác ABC có góc BAC=120 độ.Các đường phân giác ad,be,cf.
CM:1/AD=1/AB+1/AC
Cho tam giác ABC (AB<AC). Vẽ AD là tia phân giác cuả góc BAC. Trên cạnh AC lấy điểm E sao cho AE=AB.
CM ADB=ADE.
ED cắt AB tại H CM BDH=EDC.
CM AD vuông góc HC
Cho tam giác ABC AB=AC,AD là phân giác của góc BAC D thuộc BC.Trên tia AD lấy điểm M sao cho M nằm giữa A,D a,CM tam giác ABM=tam giác ACM và cm tam giác BMC là tam giác cân b,Đường thẳng BM cắt cạnh AC của tam giác ABC tại E,đường thẳng CM cắt cạnh AB của Tam giác ABC tại F.Chứng minh AD vuông góc È c,Trên tia đối của tia CA lấy điểm K(K khác C),đường thẳng BK cắt tia đối của tia DA tại N.Chứng minh KN>BN
Cho tam giác ABC có AB=6,AC=5,BC=9. Trên tia đối của AB lấy D sao cho AD=AC. a) Cm tam ADC đồng dạng với tam giác ABC. b) Tính CD. c) Cm góc BAC=2 lần góc ACD
Sửa đề: AC=7,5
a: Sửa đề: ΔABC đồng dạng với ΔCBD
Xét ΔABC và ΔCBD có
BA/BC=CB/BD
góc B chung
=>ΔABC đồng dạng với ΔCBD
b: ΔABC đồng dạng với ΔCBD
=>AC/CD=AB/CB
=>7,5/CD=6/9=2/3
=>CD=11,25(cm)
Cho tam giác ABC với AD là đường phân giác của góc A , biết AB = 6 cm , AC= 8 cm , BC = 10 cm . Tính BD và CD
Áp dụng định lý Pi-ta-go, ta có:
\(BD^2=AB^2+AD^2=6^2+8^2=100\)
=> BD = 10 (cm)
AD là phân giác của góc A:
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\)
\(\Rightarrow\frac{BD}{CD}=\frac{6}{8}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{3}=\frac{CD}{4}\)
Mà: \(BD+CD=10\Rightarrow\frac{BD}{3}=\frac{CD}{4}=\frac{\left(BD+DB\right)}{7}=\frac{10}{7}\)
\(\Rightarrow BD=\frac{10}{7}.3=\frac{30}{7}\left(cm\right)\)
\(\Rightarrow CD=\frac{10}{7}.4=\frac{40}{7}\left(cm\right)\)
Cho hình vẽ bên: Biết BD CE AB AC a) Chứng minh AD AE AB AC b) Cho biết AD=2cm, BD=1cm và AC 4cm . Tính EC.