Cho S = abc + bca + cab
Chứng minh rằng S không phải là số chính phương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho S=abc+bca+cab
Chứng minh rằng S không phải là số chính phương
\(S=\overline{abc}+\overline{bca}+\overline{cab}\)
\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)
\(=111a+111b+111c\)
\(=111\left(a+b+c\right)=37.3\left(a+b+c\right)\)
vì : \(0< a,b,c\le9;\left(a;b;c\in N\right)\)
\(\Rightarrow a+b+c\le27\)
\(\Rightarrow a+b+c⋮̸37̸\)
mà \(\left(3,37\right)=1\)
\(\Rightarrow3\left(a+b+c\right)⋮̸37̸\)
do đó S không là số chính phương
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
Cho S=abc+bca+cab. Chứng minh rằng S không phải số chính phương.
ta có : abc + bca + cab = 111a + 111b + 111c
= 111 . (a+b+c)
= 3. 37 . (a+b+c)
Để S là số chính phương thì a+b+c = 3. 37 . k^2.
Mà a+ b+ c < hoặc = 27 nên :
Vay tog S ko phai la so chih phuong
Cho \(S=\overline{abc}+\overline{bca}+\overline{cab}\)
Chứng minh rằng S không phải là số chính phương
S = abc + bca + cab
S = 100a+10b+c+100b+10c+a+100c+10a+b
S=111a+111b+111c
S=111 x (a+b+c)
=> S không phải số chính phương vì a+b+c là các số tự nhiên có 1 chữ số nên a+b+c <111
1 cho s = abc + bca +cab chứng minh s không phải là số chính phương
Cho S=abc+bca+cab. Chứng minh S không phải là số chính phương?
Cho S=abc+bca+cab
Chứng minh S không phải là số chính phương
S=abc+bca+cab=ax100+bx10+c+bx100+cx10+ax1+cx100+ax10+b=ax111+bx111+
Cx111=(a+b+c)x111
Vì số chính phương có dạng a^2 mà a+b+c có tổng nhiều nhất là 27 nên suy ra S không phải số chính phương(điều cần chứng minh)
Cho S = abc + bca + cab
Chính minh rằng S không phải là số chính phương
S = abc + bca + cab
=a.100+b.10+c+b.100+c.10+a+c.100+a.10+b
=a.(100+10+1)+b.(100+10+1)+c.(100+10+1)
=a.111+b.111+b.111
=(a+b+c).111
=> (a+b+c) thuộc {1;2;3;4;5;6;7;8;9}
=> S thuộc {111;222;333;444;555;666;777;888;999}
nhé
S = abc + bca + cab
=a.100+b.10+c+b.100+c.10+a+c.100+a.10+b
=a.(100+10+1)+b.(100+10+1)+c.(100+10+1)
=a.111+b.111+b.111
=(a+b+c).111
=> (a+b+c) thuộc {1;2;3;4;5;6;7;8;9}
=> S thuộc {111;222;333;444;555;666;777;888;999}
nhé Hoàng Thu Hà
abc+bca+cab
=100a+10b+c+100b+10c+a+100c+10a+b
=(100a+10a+a)+(100b+10b+b)+(100c+10c+c)
=111a+111b+111c=111.(a+b+c)=3.37.(a+b+c)
Vì S là 1 SCP mà 37 là số nguyên tố=>S chia hết cho 37
Nhưng a+b+c ko chia hết cho 37 =>S=abc+bca+cab ko là 1 SCP
cho S = abc + bca + cab . chứng minh rằng S không phải là số chính phương
S=abc+bca+cab
=100a+10b+c+100b+10c+a+100c+10a+b
=111a+111b+111c
=111(a+b+c)
giả sử S là số chính phương
=>a+b+c=111.k2 (k khác 0)
mà a+b+c<28=>S không phải là số chính phương
vậy không có S
Cho S=\(abc+bca+cab\)
Chứng minh rằng S không phải số chính phương