Những câu hỏi liên quan
H24
Xem chi tiết
NT
4 tháng 2 2020 lúc 23:06

https://olm.vn/hoi-dap/detail/54671443759.html

Bình luận (0)
 Khách vãng lai đã xóa
MN
Xem chi tiết
H24
26 tháng 6 2019 lúc 17:31

Tham khảo nha bạn :

Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến

Bình luận (0)
HN
Xem chi tiết
H24
Xem chi tiết
H24
16 tháng 3 2019 lúc 11:52

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

Bình luận (0)
TV
Xem chi tiết
BD
19 tháng 2 2017 lúc 9:15

Rút gọn dãy tính thứ nhất :

1/1 + 1/( 2 + 3 + 4 + .... + 50 )2

= 1 + 1/12742 

= 1 + 1/1623076 

1 + 1/1623076 < 173/100

Bình luận (0)
AN
Xem chi tiết
NH
Xem chi tiết
LH
8 tháng 6 2020 lúc 21:07

ta có

M= 1+1/2^2+1/3^2+...+1/50^2

vì 1=1

1/2^2<1/1*2

1/3^2<1/2*3

.....

1/50^2<1/49*50

=> M< 1+1/1*2+1/2*3+...1/49*50

=> M< (1/1*1+1/1*2+1/2*3+...+1/49 *50)

=> M<( 1/1-1/1+1/1-1/2+...+1/49-1/50)

=> M< (1-1/50)

=> M< 49/50

ta có 49/50= 98/100 và 98/100<173/100=> M<173/100

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
PA
17 tháng 4 2017 lúc 22:05


dãy số của bạn không có quy luật, nên xem lại câu hỏi

Bình luận (0)
PD
Xem chi tiết
PD
4 tháng 12 2019 lúc 15:41

Nhanh lên nhé

Bình luận (0)
 Khách vãng lai đã xóa
PD
4 tháng 12 2019 lúc 15:51

Giups mnihf đi

Bình luận (0)
 Khách vãng lai đã xóa
TC
4 tháng 12 2019 lúc 16:19

Mk làm câu a thôi nhé :)

Vì \(\frac{1}{5^2}< \frac{1}{4.5}\)

     \(\frac{1}{6^2}< \frac{1}{5.6}\)

       ...

       \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(=>\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(< \)\(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

                                                                          \(=\frac{1}{4}-\frac{1}{100}\)(1)

Vì \(\frac{1}{5^2}>\frac{1}{5.6}\)

     \(\frac{1}{6^2}>\frac{1}{6.7}\)

       ...

       \(\frac{1}{100^2}>\frac{1}{100.101}\)

\(=>\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{100}-\frac{1}{101}\)

                                                                   \(=\frac{1}{5}-\frac{1}{101}\)(2)

Từ (1) và (2) => ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa