Những câu hỏi liên quan
LY
Xem chi tiết
LK
Xem chi tiết
NB
Xem chi tiết
TN
19 tháng 6 2016 lúc 16:01

Lần sau bạn vào fx viết đề cho rõ nhé :))

\(Gt\Leftrightarrow a^2+b^2+ab=c^2+d^2+cd\)

Bình 2 vế đc:

\(a^4+b^4+2a^3b+2ab^3+3a^2b^2\)\(=c^4+d^4+2c^3d+2cd^3+3c^2d^2\)

\(\Leftrightarrow2\left(a^4+b^4+2a^3b+2ab^3+3a^2b^2\right)\)\(=2\left(c^4+d^4+2c^3d+2cd^3+3c^2d^2\right)\)

\(\Leftrightarrow a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)

Bình luận (0)
TA
Xem chi tiết
LA
Xem chi tiết
BH
14 tháng 3 2019 lúc 21:38

ta có \(a^2,b^2,c^2\ge0\)

mà \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\Rightarrow a+b+c=0\)

Điều này trái với GT a+b+c=6 \(\Rightarrow\)Đề sai 

còn a+b+c=0 và a^2+b^2+c^2=6 thì bài này có nhiều trên mạng lắm search ik 

Bình luận (0)
LA
14 tháng 3 2019 lúc 21:45

Thank you

Bình luận (0)
LK
14 tháng 3 2019 lúc 22:10

Ta có:

\(a+b+c=6\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=36\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=36\)

\(\Leftrightarrow ab+bc+ac=18\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=324\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2+2abc\left(a+b+c\right)=324\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2=324\)

Có: \(a^2+b^2+c^2=0\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=0\)

\(\Leftrightarrow a^4+b^4+c^4+2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\right]=0\)

\(\Leftrightarrow P=a^4+b^4+c^4=-648\)

Như thế có thể kết luận đề sai 

Do tất cả đề lớn hơn bằng 0

Mình trình bày cách giải ra đề lần sau đề đúng để bn có hướng làm 

Bình luận (0)
NT
Xem chi tiết
TP
Xem chi tiết
TN
Xem chi tiết
PL
Xem chi tiết
TN
14 tháng 12 2017 lúc 21:51

Ta có: a2+b2+(a-b)2=c2+d2+(c-d)2

=> [a2+b2+(a-b)2]2=[c2+d2+(c-d)2]2

=>a4+b4+(a-b)4+2.[a2b2+a2.(a-b)2+b2.(a-b)2] = c4+d4+(c-d)4+2.[c2d2+c2.(c-d)2+d2.(c-d)2]

=> a4+b4+(a-b)4+2.[a2b2+(a-b)2.(a2+b2)] = c4+d4+(c-d)4+2.[c2d2+(c-d)2.(c2+d2)] (1)

Mặt khác a2+b2+(a-b)2=c2+d2+(c-d)2

=> 2.(a2+b2-ab)=2.(c2+d2-cd)

=> a2+b2-ab=c2+d2-cd

=> (a2+b2-ab)2=(c2+d2-cd)2

=> (a2+b2)2-2ab.(a2+b2)+a2b2= (c2+d2)2-2cd(c2+d2)+c2d2

=> a2b2+(a2+b2)(a2+b2-2ab)= c2d2+(c2+d2)(c2+d2-2cd)

=> a2b2+(a2+b2)(a+b)2=c2d2+(c2+d2)(c-d)(2)

Lấy (1) trừ (2) vế với vế ta được:

a4+b4+(a-b)4=c4+d4+(c-d)4

=> đpcm

Bình luận (0)
H24
Xem chi tiết