Những câu hỏi liên quan
DA
Xem chi tiết
NK
Xem chi tiết
H24
13 tháng 8 2019 lúc 16:52

\(d=\left(21a+4,14a+3\right)\Rightarrow\hept{\begin{cases}21a+4⋮d\\14a+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42a+8⋮d\\42a+9⋮d\end{cases}}\Rightarrow\left(42a+9\right)-\left(42a+8\right)=1⋮d\Rightarrow d=1\) 

\(\Rightarrow\text{đ}cpm\)

Bình luận (0)
LC
13 tháng 8 2019 lúc 16:53

Gọi \(\left(21n+4;14n+3\right)=d\)

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2.\left(21n+4\right)⋮d\\3.\left(14n+3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản với mọi n là số tự nhiên

Bình luận (0)
VI

Gọi UCLN 21n + 4 và 14n + 3 là d

\(\Rightarrow21n+4⋮d;14n+3⋮d\)

\(\Rightarrow\left(21n+4\right).2⋮d\Rightarrow42n+8⋮d\)

\(\Rightarrow\left(14n+3\right).3⋮d\Rightarrow42n+9⋮d\)

\(\Rightarrow\left[\left(42n+9\right)-\left(42n+8\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow21n+4\)và \(14n+3NTNN\)

\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản

Bình luận (0)
NA
Xem chi tiết
SG
23 tháng 4 2016 lúc 16:22

Gọi ƯCLN(21n+4,14n+3) là d.

=>21n+4 chia hết cho d

14n+3 chia hết cho d

=>[3(14n+3)-2(21n+4)chia hết cho d

=>[42n+9-42n-8] chia hết cho d

=> 1 chia hết cho d

=> d=1

=> đpcm

Bình luận (0)
NA
Xem chi tiết
LC
29 tháng 8 2015 lúc 20:44

Gọi ƯC(21n+4,14n+3)=d

21n+4 chia hết cho d

=>2.(21n+4)=42n+8 chia hết cho d

14n+3 chia hết cho d

=>3.(14n+3)= 42n+6 chia hết cho d 

=>42n+8-42n-6 chia hết cho d

=>2 chia hết cho d

=>d=Ư(2)=(1,2)

Lại có: 14n+3 choa hết cho d

=>2.(7n+1)+1 chia hết cho d

mà 2.(7n+1)+1 là số lẻ

=>d không chia hết cho 2

=>d khác 2

=>d=1

=>ƯC(21n+4,14n+3)=1

=>Phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản

=>ĐPCM

Bình luận (0)
PT
13 tháng 1 2018 lúc 19:32

Gọi ƯC(21n+4,14n+3)=d

21n+4 chia hết cho d

=>2.(21n+4)=42n+8 chia hết cho d

14n+3 chia hết cho d

=>3.(14n+3)= 42n+6 chia hết cho d 

=>42n+8-42n-6 chia hết cho d

=>2 chia hết cho d

=>d=Ư(2)=(1,2)

Lại có: 14n+3 choa hết cho d

=>2.(7n+1)+1 chia hết cho d

mà 2.(7n+1)+1 là số lẻ

=>d không chia hết cho 2

=>d khác 2

=>d=1

=>ƯC(21n+4,14n+3)=1

=>Phân số 21n+414n+3 là phân số tối giản

=>ĐPCM

Bình luận (0)
LN
21 tháng 6 2020 lúc 17:32

Đồ ngu, cái j cũng hỏi, tưởng thế là hay à

Fuck You

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TH
4 tháng 3 2022 lúc 21:01

-Gọi \(ƯCLN\left(14n+3;21n+4\right)=a\).

-Có: \(\left(14n+3\right)⋮a\)

\(\Rightarrow\left[3.\left(14n+3\right)\right]⋮a\)

\(\Rightarrow\left(42n+9\right)⋮a\) (1)

-Có: \(\left(21n+4\right)⋮a\)

\(\Rightarrow\left[2\left(21n+4\right)\right]⋮a\)

\(\Rightarrow\left(48n+8\right)⋮a\) (2)

-Từ (1) và (2) suy ra:

\(\left[\left(48n+9\right)-\left(48n+8\right)\right]⋮a\)

\(\Rightarrow1⋮a\)

\(\Rightarrow a\in\left\{1;-1\right\}\)

-Vậy \(\dfrac{14n+3}{21n+4}\) là phân số tối giản.

Bình luận (0)
NN
Xem chi tiết
DH
15 tháng 7 2021 lúc 16:15

Đặt \(d=\left(21n+4,14n+3\right)\)

Suy ra 

\(\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow3\left(14n+3\right)-2\left(21n+4\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
ND
15 tháng 7 2021 lúc 16:17

) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 ⋮⋮d; 14n+3 ⋮⋮d

=> (14n+3) -(21n+4) ⋮⋮d

=> 3(14n+3) -2(21n+4) ⋮⋮d

=> 42n+9 - 42n -8 ⋮⋮d

=> 1⋮⋮d

=> 21n+4/14n+3 là phân số tối giản

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
H24
Xem chi tiết
HC
6 tháng 1 2017 lúc 10:35

Sao lại là tìm d ? Phải là tìm n chứ

Bình luận (0)
H24
Xem chi tiết
PG
12 tháng 1 2022 lúc 9:31

Gọi ƯCLN 21n + 4 và 14n + 3 là d ( d ∈ N và d ≥ 1 )

Khi đó:  2 ( 21n + 4 ) ⋮ d  và 3 ( 14n + 3 ) ⋮ d

hay 42n + 8 ⋮ d    và 42n + 9 ⋮ d

Suy ra   42n + 9 - 42n + 8 ⋮ d   ⇒ 1 ⋮ d

Vậy d = 1 

Như vậy phân số \(\dfrac{21n+4}{14n+3}\) là phân số tối giản với n là số tự nhiên

Bình luận (0)
NT
12 tháng 1 2022 lúc 9:28

Gọi d=UCLN(14n+3;21n+4)

\(\Leftrightarrow\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy: 14n+3/21n+4 là phân số tối giản

Bình luận (0)