chứng minh da thuc sau vo ngiem
g(x)=x^2-2x+2
q(x)=x^4-4x^2+7
cho da thuc f(x)= -2+x^4+2x^2-3x^3+4x^4-5x^4+3x^3+3 chung minh rang da thuc f(x) ko co nghiem tai moi gia tri cua x
chung minh da thuc: M(x)= x4+x+11/2.x2 +6 vo nghiem
chung minh da thuc: M(x)= x4+x+11/2.x2 +6 vo nghiem
x^4>hoặc=0
nên x^4+x>hoặc=0
=>x^4+x+11/2.x^2+6>hoặc=0
=>đa thức M(x) vô nghiệm
chung minh da thuc f(x) = x^8 - x^5 + x^2 +1 vo nghiem
Giả sử f(x) tồn tại giá trị nghiệm n bất kì nào đó ( n\(\in\) R )
Khi đó f(x) = x8+ x2 - x5 +1= 0 (1)
Xét các trường hợp của x5, ta có:
TH1: x5 là số âm \(\Rightarrow\) x8+ x2 - x5 +1 = x8+ x2 - (- x5) +1 = x8+ x2 +x5+ 1 luôn lớn hơn 0 ( trái với 1)
TH2 : x5 là số dương \(\Rightarrow\) x8+ x2 - x5 +1=x8+ x2 - x5 +1 mà x8+x2+1 luôn lớn hơn x5 nên x8+ x2 - x5 +1 luôn lớn hơn 0 ( trái với 1)
\(\Rightarrow\) không tồn tại giá trị n nào của x để x8+ x2 - x5 +1= 0 , như vậy điều giả sử là sai. Vậy đa thức
x8+ x2 -x5 +1 vô nghiệm
\(x^8-x^5+x^2+1=\left(x^4\right)^2-2.\frac{1}{2}.x^4.x+\left(\frac{1}{2}x\right)^2+\frac{3}{4}x^2+1=\left(x^4-\frac{1}{2}x\right)^2+\frac{3}{4}x^2+1>0\)
\(\Rightarrow\)vô nghiệm
pt da thuc sau thanh nhan tu : x^3-9x^2+15x+ 25 ; X^8 - 4X^2- 11X+ 30
2 X^4+X^3 - 22X^2+ 15 X- 36
3X^3+ 5X^2-14X+ 4
2X^3- X^2- 3X -1
MN GIUPS MINH CAU NAY NHA ,MINH DANG CAN GAP, CHIEU NAY NOP
a) \(x^3-9x^2+15x+25\)
\(=x^3+x^2-10x^2-10x+25x+25\)
\(=x^2\left(x+1\right)-10x\left(x+1\right)+25\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2.x.5+25\right)=\left(x+1\right)\left(x-5\right)^2\)
b) \(x^8-4x^2-11x+30:\text{đề sai thì phải bạn ạ!}\)
c) \(x^4+x^3-22x^2+15x-36\)
\(=\left(2x^4-6x^3\right)+\left(7x^3-21x^2\right)-\left(x^2-3x\right)+12x-36\)
\(=2x^3\left(x-3\right)+7x^2\left(x-3\right)-x\left(x-3\right)+12\left(x-3\right)\)
\(=\left(x-3\right)\left(2x^3+8x^2-x^2-x+12\right)\)
\(=\left(x-3\right)\left[\left(2x^3+8x^2\right)-\left(x^2+4x\right)+3\left(x+4\right)\right]\)
\(=\left(x-3\right)\left[2x^2\left(x+4\right)-x\left(x+4\right)+3\left(x+4\right)\right]\)
\(=\left(x-3\right)\left(x+4\right)\left(2x^2-x+3\right)\)
a, x^3-x^2-4x^2+8x-4
b, 4x^2-25-(2x-5)2x+7
c, x^3+27+(x+3)(x-9)
d, 2x^2-2y^2+5x-5y
e, x^2-y^2-2y-1
phan tich da thuc thanh nhan tu
bai 1: cho cac da thuc
f(x)= x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-1/4x+2x-3
g(x)=5x^4-x^5+1/2x^4+x^5+x^2-4x^4-2x^3+3x^2+x^3-1/4
a, thu gon va sap xep cac da thuc tren theo luy thua giam dancua ien
b,tinh f(1);f(-1); g(1); g(-1)
c,tinh f(x)+g(x);f(x)-g(x)
bai 1: cho cac da thuc
f(x)= x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-1/4x+2x-3
g(x)=5x^4-x^5+1/2x^4+x^5+x^2-4x^4-2x^3+3x^2+x^3-1/4
a, thu gon va sap xep cac da thuc tren theo luy thua giam dancua ien
b,tinh f(1);f(-1); g(1); g(-1)
c,tinh f(x)+g(x);f(x)-g(x)
a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)
\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)
\(=7x^4-9x^3+\frac{7}{4}x-3\)
\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)
\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)
\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)
b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)
\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)
\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)
\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)
c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)
\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)
f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)
\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)
BAI 1.phan tich cac da thuc sau thanh nhan tu:
a,2x^2-2xy-5x+5y
b,8x^2+4xy-2ax-ay
c,x^3-4x^2+4x
d,2xy-x^2-y^2+16
e,x^2-y^2-2yz-z^2
g,3a^2-6ab+3b^2-12c^2
BAI 2.tinh nhanh
a,37,5.8,5-7,5.3,4-6,6.7,5+1,5.37,5
b,35^2+40^2-25^2+80.35
BAI 3. Tim x biet:
a,x^3-1/9x=0
b,2x-2y-x^2+2xy-y^2=0
c,x(x-3)+x-3=0
d,x^2(x-3)+27-9x=0
BAI 4.Phan tich cac da thuc sau thanh nhan tu
a,x^2-4x+3
goi y :tach-4x=-x3xhoac tach3=-1+4
b,x^2+x-6
c,x^2-5x+6
d,x^4+4 (goi y:them va bot 4x^2)
BAI 5.Chung minh rang;
(3n+4)^2-16 chia het cho 3 voi moi so nguyen n.
BAI 6.Tinh gia tri cua bieu thuc sau:
M=a^3-a^2b-ab^2+b^3 voi a=5,75:b=4,25
BAI 7.Tim x biet:
a,x^2+x=6
b,6x^3+x^2=2x
Bài 1 câu g bạn kia làm sai mình sửa lại nhá
\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2\right)-12c^2\)
\(=3\left(a-b\right)^2-12c^2\)
\(=3\left[\left(a-b\right)^2-4c^2\right]\)
\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)
Để mình làm tiếp cho :))
Bài 2 :
Câu a : \(37,5.8,5-7,5.3,4-6,6.7,5+1,5.37,5\)
\(=\left(37,5.8,5+1,5.37,5\right)-\left(7,5.3,4+6,6.7,5\right)\)
\(=37,5\left(8,5+1,5\right)-7,5\left(3,4+6,6\right)\)
\(=37,5.10-7,5.10\)
\(=10.30=300\)
Câu b : \(35^2+40^2-25^2+80.35\)
\(=\left(35^2+80.35+40^2\right)-25^2\)
\(=\left(30+45\right)^2-25^2\)
\(=75^2-25^2\)
\(=\left(75+25\right)\left(75-25\right)\)
\(=100.50=5000\)
Bài 3 :
Câu a : \(x^3-\dfrac{1}{9}x=0\)
\(\Leftrightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{1}{9}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{3}\end{matrix}\right.\)
Câu b : \(2x-2y-x^2+2xy-y^2=0\)
\(\Leftrightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\2-x+y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=y\\x+y=2\Rightarrow x=2-y\end{matrix}\right.\)
Câu c :
\(x\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(x^2\left(x-3\right)+27-9x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-9\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\pm3\end{matrix}\right.\)
Bài 4 :
Câu a :
\(x^2-4x+3\)
\(=x^2-x-3x+3\)
\(=\left(x^2-x\right)-\left(3x-3\right)\)
\(=x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(x-3\right)\)
Câu b :
\(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
Câu c :
\(x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=\left(x^2-2x\right)-\left(3x-6\right)\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
Câu d :
\(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
Bài 1:
a) \(2x^2-2xy-5x+5y\)
\(=\left(2x^2-2xy\right)-\left(5x-5y\right)\)
\(=2x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(2x-5\right)\)
b) \(8x^2+4xy-2ax-ay\)
\(=\left(8x^2+4xy\right)-\left(2ax+ay\right)\)
\(=4x\left(2x+y\right)-a\left(2x+y\right)\)
\(=\left(2x+y\right)\left(4x-a\right)\)
c) \(x^3-4x^2+4x\)
\(=x\left(x^2-4x+4\right)\)
\(=x\left(x-2\right)^2\)
d) \(2xy-x^2-y^2+16\)
\(=-\left[\left(x^2-2xy+y^2\right)-16\right]\)
\(=-\left[\left(x-y\right)^2-4^2\right]\)
\(=-\left[\left(x-y-4\right)\left(x-y+4\right)\right]\)
e) \(x^2-y^2-2yz-z^2\)
\(=-\left[\left(z^2+2yz+y^2\right)-x^2\right]\)
\(=-\left[\left(z+y\right)^2-x^2\right]\)
\(=-\left[\left(z+y+x\right)\left(z+y-x\right)\right]\)
g) \(3a^2-6ab+3b^2-12c^2\)
\(=\left(3a^2-6ab+3b^2\right)-12c^2\)
\(=\left(\sqrt{3a}+\sqrt{3b}\right)^2-12c^2\)
\(=\left(\sqrt{3a}+\sqrt{3b}+\sqrt{12c}\right)\left(\sqrt{3a}+\sqrt{3b}-\sqrt{12c}\right)\)