Cho đa thức P(x)=2x^2+12X+23
Chúng minh rằng đa thức trên không có nghiệm.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho đa thức P(x)=2x^2+12x+23.CMR: đa thức đã cho không có nghiệm
Cho đa thức : x^4 + 2x^2 + 1
Chứng tỏ rằng đa thức trên không có nghiệm
Help me !!
Mai mik nộp r
Ta có \(x^4+2x^2+1=\left(x^2+1\right)^2\)
Ta thấy \(\left(x^2+1\right)^2>0\forall x\)
\(\Rightarrow\)đa thức trên không có nghiệm
Vậy ...
cho đa thức x2 + 2x + 2
chứng minh rằng đa thức trên k có nghiệm
Co x^2+2x+2=0
=> x^2+x+x+1+1=0
=>x(x+1)+x+1+1=0
=>(x+1)^2+1=0
co (x+1)^2 Lon hon hoax bang 0
=> (x+1)^2+1 Lon hon hoax bang 1>0
vay da thuc do vo nghiem
Ta có : x2 + 2x + 2 = 0
\(\Rightarrow\)x ^ 2 + x + x + 1 + 1 = 0
\(\Rightarrow\)x( x + 1) + x + 1 + 1 = 0
\(\Rightarrow\)(x + 1) ^ 2 + 1 = 0
Ta có : ( x + 1 )^ 2 Lớn hơn hoặc bằng 0
\(\Rightarrow\)(x+1)^2 + 1 Lớn hơn hoax bằng 1>0
Vậy đa thức đó vô nghiệm
đề bài : cho đa thức P(X) = \(5x^3+2x^4-x^2+3x^2-x^3-2x^4+1-4x^3\)
a) Thu gọn và sắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.
b) Tính P(1) và P(-1)
c) Chứng tỏ rằng đa thức trên không có nghiệm
a) \(P(x) = 5x^3 + 2x^4 - x^2 + 3x^2 - x^3 - 2x^4 +1 -4x^3\)
\(= (2x^4 - 2x^4) + (5x^3 - 4x^3 - x^3) + (-x^2 + 3x^2) + 1 \)
\(=2x^2 +1\)
b) \(P(1) = 2.1^2 +1 = 2 + 1 = 3\)
\(P(-1) = 2.(-1)^2 + 1 = 2 + 1 = 3\)
c) Vì \(2x^2 \geq 0 \) với mọi x; 1 > 0 nên \(2x^2 + 1 > 0\) hay P(x) > 0 với mọi x
=> Đa thức trên không có nghiệm
Đây là môn Toán mà sao lại thuộc về lĩnh vực Vật Lí
Cho đa thức: \(M=x^2+x+1\).
1) Chứng minh rằng đa thức trên không có nghiệm
2) Tìm giá trị nhỏ nhất của đa thức M
\(M=\left(x^2+0,5x\right)+\left(0,5x+0,25\right)+0,75\)
\(M=x\left(x+0,5\right)+0,5\left(x+0,5\right)+0,75\)
\(M=\left(x+0,5\right)^2+0,75>0\)
\(\Rightarrow\) Đa thức M không có nghiệm
Đpcm
bài này mình chỉ biết làm câu a thôi thông cảm:
M=x^2+x+1
x^2> hoặc =0 với mọi x
x> hoặc =0 với mọi x
1>0
Suy ra M=x^2+x+1 ko có nghiệm
b) mình chỉ biết làm GTLN thôi sorry
a) Ta có : \(x^2+x+1=x^2+2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
=> M vô no vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\inℝ\)
b) Từ câu a) ta có : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}.\)Dấu "=" xảy ra khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy \(M_{min}=\frac{3}{4}\Leftrightarrow x=-\frac{1}{2}\)
1) Tìm nghiệm của đa thức: 2x2+2x+1.
2)
a) Viết tập hợp S tất cả các nghiệm của đa thức x3-2x2-5x+6 biết rằng đa thức trên không có quá 3 nghiệm.
b) Viết tập hợp các nghiệm của đa thức x3 + 3x2 - 6x - 8.
1) Ta có: 2x2 + 2x + 1 = 0
<=> x2 + (x2 + 2x + 1) = 0
<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0 (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)
x = x+ 1 => 0 = 1 Vô lý
Vậy đa thức đã cho ko có nghiệm
2) a) x3-2x2-5x+6 = 0
=> x3 - x2 - x2 + x - 6x + 6 = 0
=> ( x3 - x2) - (x2 - x) - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0
=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0
=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0
=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0
=> x = 1 hoặc x = -2 hoặc x = 3
Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3
b) x3 + 3x2 - 6x - 8 = 0
=> x3 + x2 + 2x2 + 2x - 8x - 8 = 0
=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0
=> (x+ 1). [x2 + 2x - 8] = 0
=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0
=> (x +1). (x -2). (x+4) = 0
=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0
=> x = -1 hoặc x = 2 hoặc x = -4
Đa thức đã cho có 3 nghiệm là -1; 2; -4
chứng minh rằng đa thức sau không có nghiệm :f(x)=2x^2+2x+10
ta có:\(x\ge0\Rightarrow2x^2\ge0\)
\(\Rightarrow2x^2+2x\ge0\)
mà 10 > 0
\(=>2x^2+2x+10>0\)
hayf(x) ko có nghiệm
Câu 1 : Cho đa thức : P(x) = x^2 + 2x +2
Chứng minh rằng đa thức đã cho ko có nghiệm.
Câu 2 : Cho đa thức : P(x) = 2 ( x-3)^2 + 5
Chứng minh rằng đa thức đã cho ko có nghiệm.
Câu 3 : Cho đa thức : P(x) = -x^4x-7
Chứng minh rằng đa thức đã cho ko có nghiệm.
Câu 1:
Ta có:
\(P\left(x\right)=x^2+2x+2\\ P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\\ P\left(x\right)=x\left(x+1\right)+\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)
nên\(\left(x+1\right)^2+1\ge1\)
\(\Rightarrow P\left(x\right)\ge1\ne0\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm
Câu 2:
Ta có:
\(\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2+5\ge5\ne0\\ \Rightarrow P\left(x\right)\ne0\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm.
Câu 3:
Vì \(4x⋮2\) nên \(4x\) nên là số chẵn.
\(\Rightarrow x^{4x}\ge0\\\Rightarrow-x^{4x}\le0\\ \Rightarrow-x^{4x}-7\le-7\ne0\\ \Rightarrow P\left(x\right)\ne0 \)
Vậy đa thức \(P\left(x\right)\) không có nghiệm.
Cho đa thức P(x)=2(x-3)^2+5. Chứng minh rằng đa thức đã cho không có nghiệm
có: 2(x-3)^2 >hoặc = 0 với mọi x
suy ra: 2(x-3)^2+5 >hoặc = 5 với mọi x
suy ra: P(x) > 0 với mọi x
suy ra: đa thức không có nghiệm (đpcm)
giả sử
=> P(x)=2(x-3)^2+5=0
=> 2(x-3)^2=-5
=> (x-3)^2=-2.5
vì (x-3)^2 lớn hơn hoặc bằng 0 nên x ko tồn tại
=> đa thức trên vô nghiệm
giả sử
=> P(x)= 2(x-3)^2+5=0
=> 2(x3)^2 = -5
Vì (x-3)^2 lướn hơn ..........
=> đa thức trên vô nhiệm