Những câu hỏi liên quan
NN
Xem chi tiết
DT
Xem chi tiết
AK
27 tháng 7 2018 lúc 16:16

a )   Số lượng số của dãy số trên là : 

\(\left(200-101\right):1+1=100\) ( số ) 

Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau : 

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)

\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)

\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)

\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)

\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)

b )  Số lượng số dãy số trên là : 

\(\left(150-101\right):1+1=50\)( số ) 

Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)

\(\Rightarrowđpcm\)

Bình luận (0)
HT
Xem chi tiết
TL
18 tháng 6 2017 lúc 22:34

1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .

   Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )

2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .

Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .

=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .

Vậy : A < 1

Bình luận (0)
NA
16 tháng 3 2022 lúc 17:22
Đúng rồi
Bình luận (0)
 Khách vãng lai đã xóa
NA
16 tháng 3 2022 lúc 17:23
Sai sai rồi
Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
H24
14 tháng 5 2015 lúc 10:34

Dễ thấy 1/101+1/102+1/103+...+1/200>100x1/200

=>1/101+1/102+1/103+...+1/200>100/200=1/2

=>đpcm

Bình luận (0)
PL
Xem chi tiết
XO
3 tháng 2 2023 lúc 12:55

c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)

\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)

Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)

\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)

Tương tự

 \(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)

\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2) 

Từ (1) và (2) ta được

\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\) 

Bình luận (0)
XO
3 tháng 2 2023 lúc 13:08

P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)

\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)

         \(\overline{50\text{ hạng tử }}\)                            \(\overline{50\text{ hạng tử }}\)

\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\) 

\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)

\(\Rightarrow P< \dfrac{5}{6}< 1\)

Bình luận (0)
PN
Xem chi tiết
TF
5 tháng 4 2016 lúc 20:28

1-1/2+1/3-1/4+...+1/199-1/200=(1+1/2+1/3+1/4+...+199+1/200)-(1+1/2+1/3+...+1/100)=1+1/2+1/3+1/4+...+1/199+1/200-1-1/2-1/3-1/4-...-1/99-1/100=(1+1/2+1/3+...+1/100)-(1+1/2+1/3+...+1/100)+(1/101+1/102+...+1/200)=0+(1/101+1/102+...+1/200)=(1/101+1/102+...+1/200)(đpcm)

Bình luận (0)
CD
Xem chi tiết
NT
27 tháng 7 2023 lúc 9:10

S=1/101+1/102+...+1/200

=>S>1/200+1/200+...+1/200=100/200=1/2

S=1/101+1/102+...+1/200

=>S<1/100+1/100+...+1/100=100/100=1

=>1/2<S<1

Bình luận (0)
NA
21 tháng 9 2023 lúc 19:55

biểu thức AB.101=

Bình luận (0)
CD
Xem chi tiết
TG
25 tháng 3 2022 lúc 14:25

Ta có: S=1/101 > 1/200

1/102 > 1/200

1/103 > 1/200

........

1/199 > 1/200

1/200 = 1/200

=>1/101 +1/102 +1/103 +.... +1/199 +1/200 > 1/200 + 1/200 +1/200 +..... +1/200

=>1/101 + 1/102 +1/103 +..... +1/200 > 1/200x100 = 1/2

Vậy biểu thức đã cho S > 1/2 

 
Bình luận (0)
H24
Xem chi tiết
AH
25 tháng 10 2024 lúc 22:44

Lời giải:
Ta thấy:

$\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{150}> \frac{1}{150}+\frac{1}{150}+\frac{1}{150}+....+\frac{1}{150}=\frac{50}{150}=\frac{1}{3}$ (1)

$\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}> \frac{1}{200}+\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}=\frac{50}{200}=\frac{1}{4}$ (2)

Cộng kết quả (1) và (2) theo vế ta được:

$\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}> \frac{1}{3}+\frac{1}{4}=\frac{7}{12}$

Bình luận (0)