Tính tổng
5/4.6+5/6.8+5/8.10+....+5/298.300
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính tổng \(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{298.300}\)
\(\frac{5}{4\cdot6}+\frac{5}{6\cdot8}+\frac{5}{8\cdot10}+...+\frac{5}{298\cdot300}\)
\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\right)\)
\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{300}\right)\)
\(=\frac{5}{2}\cdot\frac{37}{150}\)
\(=\frac{37}{60}\)
\(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{298.300}\)
= \(\frac{5}{2}.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+...+\frac{2}{298.300}\right)\)
= \(\frac{5}{2}.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\right)\)
= \(\frac{5}{2}.\left(\frac{1}{4}-\frac{1}{300}\right)\)
= \(\frac{5}{2}.\frac{37}{150}\)
= \(\frac{37}{60}\)
Ta đặt biểu thức trên là A
\(\frac{1}{2}\)A=\(\frac{2}{4.6}\)+\(\frac{2}{6.8}\)+...........+\(\frac{2}{298.300}\)
\(\frac{1}{2}\)A=1/4-1/6+1/6-1/8+..............+1/298-1/300
\(\frac{1}{2}\)A=1/4-1/300
1/2A=74/300
A=74/300:1/2
A=37/75
Tính
\(\frac{5}{4.6}\)+\(\frac{5}{6.8}+\frac{5}{8.10}+\frac{5}{10.12}+...+\frac{5}{298.300}\)
\(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{298.300}\)
\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{298}-\frac{1}{300}\right)\)
\(=\frac{5}{2}\left(\frac{1}{4}-\frac{1}{300}\right)=\frac{5}{2}.\frac{37}{150}=\frac{37}{60}\)
tính nhanh
\(\frac{5}{4.6}\)+\(\frac{5}{6.8}\)+\(\frac{5}{8.10}\)+...+\(\frac{5}{298.300}\)
\(\frac{5}{4\cdot6}+\frac{5}{6\cdot8}+...+\frac{5}{298\cdot300}\)
\(=\frac{5}{2}\cdot\left(\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{298\cdot300}\right)\)
\(=\frac{5}{2}\cdot\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\right)\)
\(=\frac{5}{2}\cdot\left(\frac{1}{4}-\frac{1}{300}\right)\)
\(=\frac{37}{60}\)
giúp mình với mik đang cần ngay
5/4.6 + 5/6.8 + 5/8.10 + ..........+5/198.200
\(\frac{5}{4.6}+\frac{5}{6.8}+\frac{5}{8.10}+...+\frac{5}{198.200}\)
\(=\frac{5}{2}\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+...+\frac{2}{198.200}\right)\)
\(=\frac{5}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(=\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{5}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{5}{2}\left(\frac{50}{100}-\frac{1}{100}\right)\)
\(=\frac{5}{2}.\frac{49}{100}\)
\(=\frac{49}{40}\)
Ta sẽ tách 5 ra ngoài
Bạn Vũ Đình phước ơi sao bạn ko tách số 5 ở tử rồi nhân thêm 5 ở phân số.
Tính \(B=\frac{3}{2.4}-\frac{5}{4.6}+\frac{7}{6.8}-\frac{9}{8.10}+\frac{11}{10.12}-...+\frac{2019}{2018.2020}\)
\(B=\frac{3}{2.4}-\frac{5}{4.6}+\frac{7}{6.8}-\frac{9}{8.10}+...+\frac{2019}{2018.2020}\)
\(B=\frac{3}{2.1.2.2}-\frac{5}{2.2.2.3}+\frac{7}{2.3.2.4}-\frac{9}{2.4.2.5}+...+\frac{2019}{2.1009.2.1010}\)
\(B=\frac{1}{4.}.\left(\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+...+\frac{2019}{1009.1010}\right)\)
\(B=\frac{1}{4.}.\left(\frac{3}{1}-\frac{3}{2}-\frac{5}{2}+\frac{5}{3}+\frac{7}{3}-\frac{7}{4}-\frac{9}{4}+\frac{9}{5}+...+\frac{2019}{1009}-\frac{2019}{1010}\right)\)
\(B=\frac{1}{4.}.\left(\frac{3}{1}-4+4-4+4-...+4-\frac{2019}{1010}\right)\)
\(B=\frac{1}{4.}.\left(\frac{3}{1}-\frac{2019}{1010}\right)=\frac{1011}{4040}\)
Tính 4/4.6+4/6.8+4/8.10+....+4/28.30
\(\frac{4}{4.6}+\frac{4}{6.8}+\frac{4}{8.10}+...+\frac{4}{28.30}\)
\(=2.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+...+\frac{2}{28.10}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{1}{28}-\frac{1}{30}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{30}\right)=2.\left(\frac{15}{60}-\frac{2}{60}\right)=2.\frac{13}{60}=\frac{26}{60}=\frac{13}{30}\)
tính 2.4+3.5+4.6+5.7+6.8+7.9+8.10+...+97.99+98.100
trong sách nâng cao và phát triển 6 đó bạn
Tính Q:
Q= 1.4/4.6 + 2.5/6.8 + 3.6/8.10 + ..... + 48.51/98.100
Q=1/4(1.4/2.3+2.5/3.4+3.6/4.5+...+48.51/49.50)
=1/4(2.3−2/2.3+3.4−2/3.4+4.5−2/4.5+...+49.50−2/49.50)
=1/4(1− 2/2.3+ 1− 2/3.4+ 1− 2/4.5+...+1− 2/49.50)
=1/4[48−2(1/2.3+1/3.4+...+1/49.50)]
=1/4[48−2(1/2−1/3+1/3−1/4+...+1/49−150)]
=14[48−2(1/2−1/50)]=294/25
M=¹/11+¹/12+¹/13+...+¹/19+¹/20
N= 5²/5.10+5²/10.15+...+5²/2000.2005+5²/2005.2010
So sánh M và N
Cho S= 2/2.4+2/4.6+2/6.8+...+2/298.300
Q=1/101+1/102+1/103+...+1/300
So sánh S và Q
b) Ta có: \(S=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{298\cdot300}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{298}-\frac{1}{300}\)
\(=\frac{1}{2}-\frac{1}{300}=\frac{149}{300}< \frac{200}{300}=\frac{2}{3}\)
hay \(S< \frac{2}{3}\)(1)
Ta có: \(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)
nên \(\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{300}\right)>\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)+\left(\frac{1}{300}+\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)\)(vì mỗi ngoặc trên đều có 100 phân số có tử là 1)
\(\Leftrightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}>\frac{1}{200}\cdot100+\frac{1}{300}\cdot100\)
\(\Leftrightarrow Q>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
mà \(\frac{5}{6}>\frac{4}{6}=\frac{2}{3}\)
nên \(Q>\frac{2}{3}\)
hay \(\frac{2}{3}< Q\)(2)
Từ (1) và (2) suy ra S<Q