Những câu hỏi liên quan
TN
Xem chi tiết
NA
Xem chi tiết
DD
Xem chi tiết
NT
7 tháng 1 2023 lúc 9:10

Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{1;0;3;-2\right\}\)

Bình luận (0)
H24
7 tháng 1 2023 lúc 9:20

      `2n^2+3n+3 | 2n-1`

`-`   `2n^2-n`           `n+2`

     ------------------

                `4n+3`

          `-`   `4n-2`

              ------------

                       `5`

`<=> (2n^2+3n+3) : (2n-1)=5`

`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)

`+, 2n-1=1=>2n=2=>n=1`

`+, 2n-1=-1=>2n=0=>n=0`

`+, 2n-1=5=>2n=6=>n=3`

`+,2n-1=-5=>2n=-4=>n=-2`

vậy \(n\in\left\{1;0;3;-2\right\}\)

Bình luận (0)
HC
Xem chi tiết
ND
29 tháng 4 2017 lúc 11:19

2n\(\ne\) 0

2n=0

n=0/2=0

=>n\(\ne\) 2 thì 4/2n là phân số

Bình luận (0)
ND
29 tháng 4 2017 lúc 11:20

để 4/2n là số nguyên thi 4\(⋮\) 2n

=>2n\(\in\) Ư (4)

2n=1

n=1/2 loại

2n=2

n=2/2=1 chọn

2n=4

n=4/2=2 chọn

Bình luận (0)
RR
Xem chi tiết
DH
16 tháng 6 2021 lúc 15:03

a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)

\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).

b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)

\(\Rightarrow n\in\left\{-1\right\}\)

c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra 

.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)

Thử lại thỏa mãn. 

Bình luận (0)
 Khách vãng lai đã xóa
RR
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết
H24
27 tháng 6 2015 lúc 19:25

a) \(A=\frac{2n-1}{n-3}=\frac{2\left(n-3\right)+5}{n-3}=2+\frac{5}{n-3}\)

Để A  nguyên thì \(\frac{5}{n-3}\) phải nguyên

=> n-3 \(\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{4;2;8;-2\right\}\)

 

Bình luận (0)
NT
Xem chi tiết