Cho đa thức bậc hai f(x) thỏa mãn điều kiện f(-1) = f(1), Chứng minh rằng f(-x) = f(x) với mọi x
Cho đa thức f(x) = ax2 + bx + c ( với a, b, c là hằng số ) thỏa mãn điều kiện f(1) = f(-1). Chứng minh rằng f(-x) = f(x) với mọi x
Ta có: f(1) = a.12 + b.1 + c = a + b + c
f(-1) = a.(-1)2 + b.(-1) + c = a - b + c
=> f(1) = f(-1) => a + b + c = a - b + c
=> a + b = a - b => a + b - a + b = 0
=> 2b = 0 => b = 0
Khi đó, ta có: f(-x) = a.(-x)2 + b.(-x) + c = ax2 - 0 . x + c = ax2 + c
f(x) = ax2 + bx + c = ax2 + 0.x + c = ax2 + c
=> f(-x) = f(x)
Ta có: f(1) = a.12 + b.1 + c = a + b + c
f(-1) = a.(-1)2 + b.(-1) + c = a - b + c
f(1) = f(-1) <=> a + b + c = a - b + c <=> b = -b <=> b = 0
=> f(x) = ax2 + c luôn thỏa mãn điều kiện f(-x) = f(x) với mọi x
Ta có \(f\left(1\right)=f\left(-1\right)\Rightarrow a\cdot1^2+b\cdot1+c=a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c\)
\(\Rightarrow a+b+c=a-b+c\Rightarrow b=0\). Do đó\(f\left(x\right)=a\cdot x^2+0\cdot x+c=a\cdot x^2+c\Rightarrow f\left(x\right)=a\cdot\left(-x\right)^2+c=a\cdot x^2+c=f\left(x\right)\)
Ở chỗ \(x^2=\left(-x\right)^2\)là do đều mang mũ hai hết nhé bạn
~Chúc bạn học tốt ~
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
T Nc cđ :
Bài 2: Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Bài 3: Cho hàm số f(x) = ax^2 + bx + c (a, b, c ∈ Z}). Biết f(-1) ⋮ 3; f(0) ⋮ 3; f(1) ⋮ 3. Chứng minh rằng a, b, c đều chia hết cho 3.
Bài 4: Cho đa thức f(x) = ax^3 + bx^2 + cx + d với a là số nguyên dương và f(5) - f(4) = 2019. Chứng minh f(7) - f(2) là hợp số.
Bài 4:
\(f\left(5\right)-f\left(4\right)=2019\)
=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)
=>\(61a+9b+21c=2019\)
\(f\left(7\right)-f\left(2\right)\)
\(=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c\)
\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số
Cho đa thức f(x) thỏa mãn điều kiện:
x.f(x + 1) = (x+2).f(x)
Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
tham khảo nha
https://olm.vn/hoi-dap/detail/77562326250.html
Câu hỏi của Đoàn Ngọc Minh Anh - Toán lớp 7 - Học toán với OnlineMath
Xét x = 0
=> 0. f(1) = 2.f(0)
=> 0 = 2. f(0)
=> f(0) = 0
=> x = 0 là nghiệm của đa thức f(x) ( 1 )
Xét x = - 2
=> - 2. f(-1) = 0.f(-2)
=> - 2. f(-1) = 0
=> f(-1) = 0
=> x = -1 là nghiệm của đa thức f(x) ( 2 )
Từ ( 1 ) và ( 2 ) => Đa thức f(x) có ít nhất 2 nghiệm
Study well ! >_<
Cho đa thức f(x) thỏa mãn điều kiện (x-1).f(x)= (x+4).f(x+8) . chứng minh rằng đa thức f(x) có ít nhất một nghiệm là số nguyên tố
Cho đa thức f(x) thỏa mãn điều kiện :
(x-1).f(x)=(x+4).f(x+8), với mọi x\(\in\)R
Chứng minh đa thức f(x) có ít nhất một nghiệm là số nguyên tố
ta có:(x-1).f(x)=(x+4).f(x+8) với mọi x. (*)
=>(*) đúng với giá trị x=1
Với x=1 thay vào (*) ta được (1-1).f(1)=(1+4).f(1+8)
=> 0.f(1)=5.f(9) =>f(9)=0
=> x=9 là 1 nghiệm của f(x)
Thay f(9)=0 vào (*) ta được
(9-1).f(9)=(9+4).f(9+8) => 8.f(9)=13.f(17)
=>8.0=13.f(17) => 0=13.f(17)
=> f(17)=0
=>17 là 1 nghiệm của f(x)
vậy có ít nhất 1 nghiệm là số nguyên tố
tk mk nha bn
*****Chúc bạn học giỏi*****
Cho đa thức f(x) thỏa mãn điều kiện:
x.f(x-2)=(x-4).f(x)
Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Cho đa thức f(x)=a*x^2+bx+c thỏa mãn f(1)=f(-1) chứng minh rằng f(x)=f(-x) với mọi giá trị x