Những câu hỏi liên quan
VV
Xem chi tiết
KD
29 tháng 7 2016 lúc 8:13

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Bình luận (0)
DT
Xem chi tiết
AH
25 tháng 2 2023 lúc 23:35

Lời giải:

Đặt $n+1995=a^2, n+2014=b^2$ với $a,b\in\mathbb{N}$

Khi đó:

$(n+2014)-(n+1995)=b^2-a^2$

$\Leftrightarrow 19=b^2-a^2=(b-a)(b+a)$

Vì $b,a$ là 2 số tự nhiên nên $b+a> b-a$. Vì $b+a>0, (b+a)(b-a)=19>0$ nên $b-a>0$

Suy ra $b+a=19; b-a=1$

$\Rightarrow b=10$

$\Rightarrow n+2014=b^2=10^2=100\Rightarrow n=-1914$

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
GA
Xem chi tiết
TN
22 tháng 5 2016 lúc 18:40

c đề thiếu 

Bình luận (0)
GA
22 tháng 5 2016 lúc 18:42

thiếu gì vậy bạn

Bình luận (0)
NM
22 tháng 5 2016 lúc 18:43

Bạn ơi, cái câu b đấy

Minh tính đc A=22016-1. 

22016=(21008)2 là chính phương. Tuiy nhiên ko tồn tại 2 số chính phương liên tiếp là 2 số tự nhiên liên tiếp. Bạn xem lại đề bài nha

Bình luận (0)
TH
Xem chi tiết
NN
4 tháng 9 2023 lúc 11:09

...

Bình luận (0)
TS
Xem chi tiết
QM
Xem chi tiết
H24
Xem chi tiết
DL
14 tháng 9 2016 lúc 14:48

Nếu n là số nguyên và   \(n^2+2014=k^2\)  (k nguyên).

\(\Rightarrow\)                                 \(k^2-n^2=2014\)

\(\Rightarrow\)               \(\left(k+n\right)\left(k-n\right)=2014\)

Nếu k và n là 2 số nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.

Vì tích của k+n và k-n là số chẵn. Nên k+n và k-n sẽ cùng là hai số chẵn. Vì tích của hai số chẵn luôn chia hết cho 4. Nhưng 2014 không chia hết cho 2014.

Vậy không có   \(n\in Z\) thỏa mãn đề bài.

Bình luận (0)