Chứng minh rằng: 3a+2b chia hết cho 17 <=> 10a+b chia hết cho 17 (a,b thuộc Z)
Giúp mk với...
Chứng minh rằng 3a + 2b chia hết cho 17 khi 10a + b chia hết cho 17 (a,b thuộc Z)
Ta có:
\(2.\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b\)
\(=17a\)
\(\text{Vì 17⋮}17\Rightarrow17a⋮17\)
\(\Rightarrow2.\left(10a+b\right)-\left(3a+2b\right)⋮17\)
\(\text{Vì }3a+2b⋮17\Rightarrow2.\left(10a+b\right)\)
\(\text{Mà (2,10)=1}\Rightarrow10a+b⋮17\)
=> 3a + 2b chia hết cho 17 khi 10a + b chia hết cho 17 (a,b ∈ Z ) (đpcm )
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
51a:17
=> 51a-a+5b:17
=> 50a+5b:17
=> 5(10a+b):17
=> 10a+b:17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
a ) Cho 3a + 2b chia hết cho 17 ( a,b thuộc N ) . Chứng minh rằng : 10a + b chia hết cho 17
b ) Cho a - 5b chia hết cho 17 ( a,b thuộc N ) . chứng minh rằng : 10a + b chia hết cho 17
cho 3a+2b chia hết cho 17(a,b thuộc N).Chứng minh rằng:10a+b chia hết cho 17
Ta có: 17a chia hết cho 17
suy ra :17a+3a+b chia hết cho 17
suy ra :20a+2b chia hết cho 17
rút gọn cho 2
suy ra :10a+b a hết cho 17
Cho 3a +2b chia hết cho 17(a,b thuộc N ). Chứng minh rằng :10a+b chia hết cho 17
do 3a+2b⋮⋮17
\Rightarrow⇒8(3a+2b)⋮⋮17
Ta có 8(3a+2b)+10a+b
=24a+16b+10a+b
=34a+17b
17(2a+b)⋮⋮17
vậy 8(3a+2b)+10a+b ⋮⋮17
mà 8(3a+2b)⋮⋮17 (\forall∀a,b\in∈N)
nên 10a+b⋮⋮17
\(2\left(10a+b\right)-\left(3a+2b\right)\)
\(=20a+2b-3a-2b\)
\(=17a\)\(⋮\)\(17\)với \(\forall a\in N\)
Vì \(3a+2b\)\(⋮\)\(17\)với \(\forall a\in N\)
\(\Rightarrow2\left(10a+b\right)\)\(⋮\)\(17\)
\(\Leftrightarrow10a+b\)\(⋮\)\(17\)với \(\forall x\in N\)
Cho 3a+2b chia hết cho 17 [a,b thuộc n] . Chứng minh rằng 10a + b cũng chia hết cho 17
Ta có: 3a+2b chia hết cho 17
=>9(3a+2b) chia hết cho 17
=>27a+18b chia hết cho 17
=>(27a-17a)+(18b-17b) chia hết cho 17 (do 17a,17b chia hết cho 17)
=>10a+b chia hết cho 17 (đpcm)
Cho 3a + 2b chia hết cho 17 (a,b thuộc N)
Chứng minh rằng: 10a + b chia hết cho 17
Cho 3a + 2b chia hết cho 17 ( a, b thuộc N). Chứng minh rằng : 10a + b chia hết cho 17
ta có 17 chia hết cho 17
suy ra 17a + 3a + b chia hết cho 17
suy ra 20a + 2b chia hết cho 17
rút gọn cho 2
suy ra 10a + b chia hết cho 17
Giả sử 10a + b chia hết cho 17
=> ( 10a + b ) - ( 3a + 2b ) chia hết cho 17
=> 3( 10a + b ) - 10( 3a + 2b ) chia hết cho 17
=> ( 30a + 3b ) - ( 30a + 20b ) chia hết cho 17
=> 30a + 3b - 30a - 20b chia hết cho 17
=> -17b chia hết cho 17
Biểu thức trên đúng vì -17b = -1 . 17 . b => chia hết cho 17
Với giả thiết ban đầu là 10a + b chia hết cho 17 ta mới có ( 10a + b ) - ( 3a + 2b ) chia hết cho 17
Mà 3a + 2b chia hết cho 17 => 10a + b phải chia hết cho 17
1. a, Cho biết 3a+2b chia hết cho 17 (a,b thuộc N). Chứng minh 10a+b chia hết co 17
b, Biết a-5b chia hết cho 17. Chứng minh 10a+b chia hết cho 17(a,b thuộc N)
a, Giả sử 10a + b \(⋮\) 17 (1)
Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17
=> 24a + 16b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17
=> 10a + b + 24a + 16b \(⋮\) 17
=> (10a + 24a) + (16b + b) \(⋮\) 17
=> 34a + 17b \(⋮\) 17
=> 17(2a + b) \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\)17 (đpcm)
b, Giả sử 10a + b \(⋮\) 17 (1)
Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17
=> 7a - 35b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17
=> 10a + b + 7a - 35b \(⋮\) 17
=> (10a + 7a) + (b - 35b) \(⋮\) 17
=> 17a + (-34b) \(⋮\) 17
=> 17.[a + (-2)b] \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\) 17 (đpcm)
không biết