A=1/1.2+1/3.4+...+1/2005.2006
B=1/1004.2006+1/1005.12005+...+1/2006.1004
Chung minh A/B la so nguyen
Đặt A=1/1.2+1/3.4+...+1/2005.2006,B=1/1004.2006+1/1005.2006+...+1/2006.1004 Chứng minh rằng A/B thuộc Z
A=1/1.2+1/3.4+...+1/2005.2006 và B=1/1004.2006+1/1005.2006+...+1/2006.1004
CMR A/B thuộc Z
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005.2006}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2005}+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(A=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1003}\right)\)
\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2006}+...+\frac{1}{2006.1004}\)
\(3010B=\frac{1004+2006}{1004.2006}+\frac{1005+2005}{1005.2005}+...+\frac{2006+1004}{2006.1004}\) ( sửa đề nhé )
\(3010B=\frac{1}{2006}+\frac{1}{1004}+\frac{1}{2005}+\frac{1}{1005}+...+\frac{1}{1004}+\frac{1}{2006}\)
\(3010B=2\left(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\right)\)
\(B=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}\)
\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}}=1505\) hay \(\frac{A}{B}\inℤ\)
Vậy ...
Chúc bạn học tốt ~
Chung minh rang: moi n thuoc z ( n khac 0,n khac -1) thi : Q =1\1.2+1\2.3+1\3.4+......+1\n(n+1) khong phai la so nguyen
Q = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
Vì n là số nguyên khác 0; - 1
=> \(\frac{1}{n+1}\)không là số nguyên
=> \(Q=1-\frac{1}{n+1}\)không là số nguyên
Nguyễn Linh Chi :) trường con lại bắt trình bày rõ ràng thế này ; nếu bạn Nguyen duc anh cũng cần cách này ;
\(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{2}-\frac{1}{2}=1-\frac{1}{2}\)
\(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3.4}=\frac{4-3}{3.4}=\frac{4}{3.4}-\frac{3}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.....
\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
rồi bắt đầu làm như cô Nguyễn Linh Chi
chợ \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{1997.1998}\)
Va \(B=\frac{1}{1000.1998}+\frac{1}{1001.1997}+...+\frac{1}{1998.1000}\)
CHUNG MINH RANG A/B LA SO NGUYEN.
bài 1 :
A = 1/ 1.2 + 1/3.4 + 1/5.6 + .........+ 1/ 2005 . 2006
B = 1/ 1004.2006 + 1/ 1005.2006 + ......+ 1/2006.1004
CMR: A/B thuộc Z ( số nguyên )
Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
B=\(\frac{1}{1004.2006}+\frac{1}{1005.2006}+\frac{1}{1006.2006}+...+\frac{1}{2006.2006}\)
Tính A chia B
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{1004.2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2006}+...+\frac{1}{2006.1004}\)
Tính \(\frac{A}{B}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\);\(B=\frac{1}{1004.2006}+\frac{1}{1005.2006}+...+\frac{1}{2006.1004}\)
Chứng minh rằng \(\frac{A}{B}\)thuộc Z
Tìm x biết
x. (1/1.2 + 1/3.4+ 1/5.6+ ....+ 1/2005.2006) = 1/1004.2006+1/1005.2005+1/1006.2004+ .....+ 1/2006.1004