Những câu hỏi liên quan
AM
Xem chi tiết
LD
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
MY
4 tháng 6 2021 lúc 22:10

có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)

có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)

từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)

=>Min A=(1+\(\sqrt{2}\))^2

 

 

Bình luận (1)
MY
5 tháng 6 2021 lúc 6:03

b, ta có : \(x+y=1=>2x+2y=2\)

\(B=\dfrac{1}{x^2+y^2}+\dfrac{3}{4xy}=\dfrac{4}{4x^2+4y^2}+\dfrac{6}{8xy}\)\(\ge\dfrac{\left(2+\sqrt{6}\right)^2}{\left(2x+2y\right)^2}\)

\(=\dfrac{\left(2+\sqrt{6}\right)^2}{2^2}=\dfrac{5+2\sqrt{6}}{2}\)=>\(B\ge\dfrac{5+2\sqrt{6}}{2}\)

=>\(MinB=\dfrac{5+2\sqrt{6}}{2}\)

 

Bình luận (0)
NT
Xem chi tiết
NH
Xem chi tiết
AH
9 tháng 1 2017 lúc 16:23

Lời giải:

Áp dụng BĐT AM-GM cho hai số $x,y$ dương ta có \(xy\leq \left(\frac{x+y}{2}\right)^2\Rightarrow \frac{4xy}{(x+y)^2}\leq 1\)

\(\Rightarrow P\leq \frac{4z}{x+y}+\frac{z^2}{(x+y)^2}+1\). Đến đây đặt \(\frac{z}{x+y}=t\). Vì \(x,y,z\in[1;2]\Rightarrow t\in[\frac{1}{4};1]\).

Khi đó \(P\leq t^2+4t+1\leq 1+4+1=6\)

Vậy $P_{max}=6$. Dấu $=$ xảy ra khi \(x=y=1;z=2\)

Bình luận (0)
TM
Xem chi tiết
AN
Xem chi tiết
PD
24 tháng 2 2018 lúc 21:50

dự đoán của chúa Pain x=y=1

áp dụng BDT cô si ta có

\(A\ge2\sqrt{\frac{\left(x+y+1\right)^2.\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=2.\)

dấu = xảy ra khi 

\(\left(x+y+1\right)^2=xy+x+y\) :)

Bình luận (0)
PD
24 tháng 2 2018 lúc 21:51

bỏ cái chỗ x=y=1 đi nhé :)

Bình luận (0)
ND
Xem chi tiết
ND
7 tháng 12 2018 lúc 5:23

các bạn giải nhanh cho mình nhé vì mình đang cần gấp

Bình luận (0)
PH
7 tháng 12 2018 lúc 12:40

Mình nghĩ bạn viết hơi sai đề bài.

\(x^2+xz-y^2-yz=\left(x^2-y^2\right)+xz-yz=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=\left(x-y\right)\left(x+y+z\right)\)

Tương tự: \(y^2+xy-z^2-xz=\left(y-z\right)\left(x+y+z\right)\)

\(z^2+yz-x^2-xy=\left(x+y+z\right)\left(z-x\right)\)

Khi đó:

 \(P=\frac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}+\frac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}+\frac{1}{\left(x-y\right)\left(x+y+z\right)\left(z-x\right)}\)

\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}=0\)

Bình luận (0)
ND
7 tháng 12 2018 lúc 13:10

um, cảm ơn bạn Pham Van Hung, có lẽ là mình chép sai đầu bài

Bình luận (0)