Những câu hỏi liên quan
PC
Xem chi tiết
PN
7 tháng 9 2020 lúc 19:40

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\left(đk:x\ge1\right)\)

\(< =>\sqrt{x-2\sqrt{x-1}}^2=\left(\sqrt{x-1}-1\right)^2\)

\(< =>x-2\sqrt{x-1}=x-1+1-2\sqrt{x-1}\)

\(< =>x-2\sqrt{x-1}+2\sqrt{x-1}=x< =>x=x\)

Vậy phương trình trên thỏa mãn với mọi \(x\ge1\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
7 tháng 9 2020 lúc 19:41

ĐKXĐ : \(x\ge1\)

Bình phương 2 vế lên ta có :

\(x-2\sqrt{x-1}=\left(\sqrt{x-1}-1\right)^2\)

\(\Leftrightarrow x-2\sqrt{x-1}=x-1-2\sqrt{x-1}+1\)

\(\Leftrightarrow x-2\sqrt{x-1}=x-2\sqrt{x-1}\)

\(\Leftrightarrow0x=0\)( luôn đúng với mọi \(x\ge1\))

Vậy ...............

Bình luận (0)
 Khách vãng lai đã xóa
CX
Xem chi tiết
TT
Xem chi tiết
AA
12 tháng 9 2019 lúc 21:33

ĐK: \(x\ge\frac{1}{2}\)

Đặt \(t=\sqrt{2x-1}\Leftrightarrow x=\frac{t^2+1}{2}\)(ĐK: \(t\ge0\)) thay vao phương trình ta được:

\(\sqrt{\frac{t^2+1}{2}+4+3t}\)+\(\sqrt{\frac{t^2+1}{2}+12-5t}=7\sqrt{2}\)

\(\Leftrightarrow\sqrt{\frac{t^2+6t+9}{2}}+\sqrt{\frac{t^2-10t+25}{2}}=7\sqrt{2}\)

\(\Leftrightarrow\frac{\sqrt{\left(t+3\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(t-5\right)^2}}{\sqrt{2}}=7\sqrt{2}\)

\(\Leftrightarrow\frac{\left|t+3\right|+\left|t-5\right|}{\sqrt{2}}=7\sqrt{2}\)

\(\Leftrightarrow t+3+\left|t-5\right|=14\)(vì \(t\ge0\Rightarrow t+3>0\))

\(\Leftrightarrow t+\left|t-5\right|=11\)

Xét TH: \(t-5\ge0\Leftrightarrow t\ge5\) thì ta có:

\(t+t-5=11\)

\(\Leftrightarrow2t=16\)

\(\Leftrightarrow t=8\)(chọn)

Xét TH: \(t-5< 0\Leftrightarrow t< 5\) thì ta có:

\(t-t+5=11\)

\(\Leftrightarrow5=11\)(vô lí nên loại)

Lại có: \(t=8\)

\(\Leftrightarrow\sqrt{2x-1}=8\)

\(\Leftrightarrow2x-1=64\)

\(\Leftrightarrow2x=63\)

\(\Leftrightarrow x=\frac{63}{2}=31\frac{1}{2}\)

Vậy nghiệm của phương trình là x=31\(\frac{1}{2}\)

Bình luận (0)
H24
12 tháng 9 2019 lúc 21:45
https://i.imgur.com/hJcTrbD.jpg
Bình luận (0)
MV
27 tháng 8 2019 lúc 17:20

32,5

Bình luận (0)
RS
Xem chi tiết
LK
27 tháng 2 2018 lúc 12:12

Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}=\frac{x-y+x+y}{16}=\frac{2x}{16}=\frac{x}{8}=\frac{25x}{200}=\frac{xy}{200}\)

Suy ra: \(25x=xy\Rightarrow y=25\)

Ta có: \(\frac{x-y}{3}=\frac{x+y}{13}\)

Suy ra: \(13x-13y=3x+3y\)

Thế y vào đẳng thức trên:

\(13x-325=3x+75\)

Suy ra: \(10x=325+75=400\Rightarrow x=40\)

Vậy ........

Bình luận (0)
AT
Xem chi tiết
NH
7 tháng 7 2016 lúc 16:19

ta có :

2^x+2^x+1+2^x+2=112

2^x(1+2^1+2^2)=112

2^x*7=112

2^x=16

suy ra x=4

Bình luận (0)
MH
7 tháng 7 2016 lúc 16:21

\(2^x+2^{x+1}+2^{x+2}=112\)

=> \(2^x.1+2^x.2+2^x.2^2=112\)

=> \(2^x.\left(1+2+4\right)=112\)

=> \(2^x.7=112\)

=> \(2^x=112:7=16\)

=> \(2^x=2^4\)

=> \(x=4\)

Bình luận (0)
NK
7 tháng 7 2016 lúc 16:24

Ta có: \(2^x+2^{x+1}+2^{x+2}=112\)

\(\Rightarrow2^x+2^x.2+2^x.2^2=112\)

\(\Rightarrow2^x\left(1+2+2^2\right)=112\)

\(\Rightarrow2^x.7=112\)

\(\Rightarrow2^x=16\)

Mả \(16=2^4\Rightarrow2^x=2^4\Rightarrow x=4\)

Vậy x = 4.

Bình luận (0)
TT
Xem chi tiết
HH
7 tháng 9 2019 lúc 22:51

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)

\(\Leftrightarrow\sqrt{x-1-2.\sqrt{x-1}.2+4}+\sqrt{x-1-2.\sqrt{x-1}.3+9}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)=5

bạn giải tiếp nhé

Bình luận (2)
TT
Xem chi tiết
NL
6 tháng 9 2019 lúc 22:12

ĐKXĐ : \(x-1\ge0\)

=> \(x\ge1\)

Ta có : \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=5\)

<=> \(\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=5\)

<=> \(\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}=5\)

<=> \(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}=5\)

<=> \(|\sqrt{x-1}-1|+|\sqrt{x-1}+1|=5\)

<=> \(|\sqrt{x-1}-1|+\sqrt{x-1}+1=5\) ( 1 )

+, TH 1 : \(\sqrt{x-1}-1\ge0\) <=> \(x\ge2\) . Khi đó phương trình (1) được :

\(\sqrt{x-1}-1+\sqrt{x-1}+1=5\)

<=> \(2\sqrt{x-1}=5\)

<=> \(\sqrt{x-1}=2,5\)

<=> \(x-1=6,25\)

<=> \(x=7,25\) ( TM )

TH 2 : \(\sqrt{x-1}-1\le0\) <=> \(x\le2\) . Khi đó phương trình (1) được :

\(1-\sqrt{x-1}+\sqrt{x-1}+1=5\)

<=> \(2=5\) ( Vô lý )

Vậy phương trình trên có nghiệm duy nhất là x = 7,25 .

Bình luận (0)
TT
Xem chi tiết
AA
12 tháng 9 2019 lúc 20:37

Ta có:\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}\)(ĐK: \(x\ge1\))

\(=\sqrt{\left(x-1\right)-2\sqrt{x-1}.2+4}+\sqrt{\left(x-1\right)+2\sqrt{x-1}.3+9}\)

\(=\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}\)

\(=\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}+3\right|\)

Thay vào phương trình ta được:

\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}+3\right|=5\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\sqrt{x-1}+3=5\)(vì \(\sqrt{x-1}\ge0\Rightarrow\sqrt{x-1}+3>0\))

-TH: \(\sqrt{x-1}-2\ge0\Leftrightarrow\sqrt{x-1}\ge2\Leftrightarrow x-1\ge4\Leftrightarrow x\ge3\)thì ta có:

\(\sqrt{x-1}-2+\sqrt{x-1}+3=5\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

\(\Leftrightarrow x=5\)

-TH:\(\sqrt{x-1}-2< 0\Leftrightarrow x< 3\) thì ta có:

\(2-\sqrt{x-1}+\sqrt{x-1}+3=5\)

\(\Leftrightarrow5=5\)(luôn đúng \(\forall1\le x< 3\))

Vậy nghiệm của phương trình là \(1\le x< 3\)\(x=5\)

Bình luận (1)
TT
Xem chi tiết
TK
7 tháng 9 2019 lúc 19:22

X=7,3267

Bình luận (2)