Những câu hỏi liên quan
TL
Xem chi tiết
H24
22 tháng 1 2022 lúc 16:55

a) \(\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\) 

⇔ \(\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)

⇔ \(\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}=\dfrac{x+2005}{2002}+\dfrac{x+2005}{2001}\)

⇔ \(\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)=0

\(\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)<0 nên phương trinh đã cho tương đương:

x+2005=0 ⇔x=-2005

b) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\) 

⇔ \(\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)

⇔ \(\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)

⇔ \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

Vì \(\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)>0\) nên phương trình đã cho tương đương:

300-x=0 ⇔ x=300

Bình luận (0)
TV
Xem chi tiết
KT
Xem chi tiết
KT
28 tháng 12 2021 lúc 20:40

vuigiúp mk vs

Bình luận (0)
H24
28 tháng 12 2021 lúc 20:40

\(a=1+2+2^2+...+2^{2021}\)

\(\Rightarrow2a=2+2^2+2^3+...+2^{2022}\)

\(\Rightarrow2a-a=2+2^2+2^3+...+2^{2022}-1-2-2^2-...-2^{2021}\)

\(\Rightarrow a=2^{2022}-1\)

\(\Rightarrow a=2^{2022}-1=b\)

Bình luận (0)
MH
28 tháng 12 2021 lúc 20:41

\(a=1+2+2^2+2^3+...+2^{2021}\)

\(2a=2+2^2+2^3+2^4...+2^{2021}+2^{2022}\)

\(2a-a=\)\(\left(2+2^2+2^3+2^4...+2^{2021}+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\)

\(a=2^{2022}-1\)

⇒ a=b

Bình luận (0)
LT
Xem chi tiết
NL
21 tháng 9 2017 lúc 21:05

a ) Ta có:

A = 1 + 3 + 3+ 33+ ..... + 36

A x 3 = 3 + 3+ 33 + 34 + .... + 37

A x 2 - A = ( 3 + 32 + 33 + 34 + .... + 37 ) - ( 1 + 3 + 32 + 33 + .... + 36 )

A = 37 - 1

Mà : B = 37 - 1 nên A = B

b ) Ta có :

C = 1 + 2 + 22 + 2+ ...... + 22002

C x 2 = 2 + 22 + 23 + 24 + ..... + 22003

C x 2 - C = ( 2 + 22 + 23 + 24 + ...... + 22003 ) - ( 1 + 2 + 22 + 2+ ..... + 22002 )

C = 22003 - 1 

Mà : D = 22003 - 1 nên C = D

Bình luận (0)
H24
19 tháng 9 2017 lúc 21:27

A=1+3+3^2+....+3^100
\Rightarrow 3A=3+ + +...+ 
\Rightarrow3A-A=2A=(3+ + + )-(1+3+ +....+ )
= -1
\RightarrowA=( -1):2

Bình luận (0)
LT
Xem chi tiết
H24
20 tháng 9 2017 lúc 20:34

a, 

A=1+3+32+33+34+35+36

=> 3A=3+32+33+34+35+36+37

=> 3A-A=(3+32+33+34+35+36+37)-(1+3+32+33+34+35+36)

=> 2A=37-1

=> A=37-1/2

Vì (37-1)/2   < 37-1 

=> A < B

b, C=1+2+22+...+22001+22002

=> 2C=2+22+23+....+22002+22003

=> 2C-C=(2+22+23+...+22002+22003)-(1+2+22+...+22002)

=> C=22003-1

Vì 22003-1 = 22003-1

=> C = D.

Bình luận (0)
LP
20 tháng 9 2017 lúc 20:37

a) \(A=1+3+3^2+...+3^6\)

\(\Rightarrow3A=3+3^2+...+3^7\)

\(\Rightarrow3A-A=3+3^2+...+3^7-1-3-3^2-...-3^6\)

\(\Rightarrow2A=3^7+2\)

\(\Rightarrow A=\frac{3^7+2}{2}\)

Vì \(3^7-1>\frac{3^7+2}{2}\)=> A < B.

b) Câu này thì nhân C cho 2 và làm tương tự như câu trên nha.

Bình luận (0)
KS
20 tháng 9 2017 lúc 20:50

A=1+3+3^2+3^3+...+3^6

3A=3x(1+3+3^2+3^3+...+3^6)

3A-A=\(\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)

2A=3^7-1

A= \(\frac{3^7-1}{2}\)

\(\Rightarrow\)A<3^7-1 ( vì  \(\frac{3^7-1}{2}\)  <3^7-1) 

                          ( điều phải chứng minh)

C= 1+2+2^2+...+2^2001+2^2002

2C=2x( 1+2+2^2+...+2^2001+2^2002)

2C-C=(2+2^2+2^3+...+2^2002+2^2003)-( 1+2+2^2+...+2^2001+2^2002)

C=2^2003-1

\(\Rightarrow\)C=2^2003-1

              ( điều phải chứng minh)

bạn ơi bài này là bài toán dạng lũy thừa cơ bản nhất của toán nâng cao lớp 6. bạn học rồi sẽ biết.

Bình luận (0)
TP
Xem chi tiết
DT
7 tháng 7 2015 lúc 14:17

A = 1 + 2 + 2² + ... + 2^2002  

A = 1 + (2 + 2² + ... + 2^2002 )  

Ta xét :  

u1 = 2  

u2 = 2.2 = 22  

u3 = 2.22 = 2^3  

u2002 = 2.2^2001 = 2^2002  

Tổng cấp số nhân : S = u1.(1 - q^n) / (1 - q) = 2.(1 - 2^2002) / (1 - 2) = 2(2^2002 - 1) = 2^2003 - 2  

A = 1 + 2^2003 - 2 = 2^2003 - 1  

So sánh với B  

2^2003 - 1 = 2^2003 - 1

 Vậy B = A 

Bình luận (0)
MT
7 tháng 7 2015 lúc 14:17

A<B                      

Bình luận (0)
LT
7 tháng 7 2015 lúc 14:32

=>2A=2+2^2+2^3+2^4+2^5+...+2^2002+2^2003

=>2A-A=2^2003-1

=>A=2^2003-1

=>A<B

 

Bình luận (0)
US
Xem chi tiết
VN
Xem chi tiết
NN
7 tháng 10 2017 lúc 19:55
a) < b) > d) < e) > f) >
Bình luận (0)
BK
Xem chi tiết
GH
6 tháng 8 2023 lúc 16:09

Bài 1: 

a) 02002 < 02023

 

b) 20220 = 20230

 

c) 549 < 5510

d) ( 4 + 5 )3 > 4+ 52

đ) 92 - 32 > ( 9 - 3 )2

Bài 2:

a) 32 x 43 - 32 + 333

= 9 x 64 - 9 + 333

= 576 - 9 + 333

= 567 + 333

= 900

b) 5 x 43 + 24 x 5 + 410

= 5 x 64 + 24 x 5 + 1

= 5 x ( 64 + 24 ) + 1

= 5 x 88 + 1

= 440 + 1

= 441

c) 23 x 42 + 32 x 5 - 40 x 12023

= 8 x 16 + 9 x 5 - 40 x 1

= 128 + 45 - 40

= 133

Bình luận (0)
NT
6 tháng 8 2023 lúc 16:07

Bài 1 :

a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)

b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)

c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)

d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)

đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)

Bình luận (0)
NT
6 tháng 8 2023 lúc 16:14

Bài 2 :

a) \(3^2.4^3-3^2+333=3^2\left(4^3-1\right)+9.37=9.63+9.37=9\left(63+37\right)=9.100=900\)

b) \(5.4^3+24.5+41^0=20.4^2+20.6+1=20\left(16+6\right)+1=20.22+1=441\)

c) \(2^3.4^2+3^2.5-40.1^{2023}=8.16+9.5-40.1=128+45-40=128+5=133\)

Bình luận (0)