\(A=1+3+3^2+...+3^{2001}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2002}\)
\(\Rightarrow3A-A=3+3^2+3^3+...+3^{2002}-1-3^2-3^3-...-3^{2001}\)
\(\Rightarrow2A=3^{2002}-1\)
\(\Rightarrow A=\dfrac{3^{2002}-1}{2}\)
Vì \(\dfrac{3^{2002}-1}{2}< 3^{2002}-1\Rightarrow A< B\)